Spin-glass ordering in Zn 1¿x Mn x In 2 Te 4 diluted magnetic semiconductor

作者: G. F. Goya , V. Sagredo

DOI: 10.1103/PHYSREVB.64.235208

关键词: Magnetic semiconductorSpin glassContent (measure theory)Condensed matter physicsParamagnetismMagnetic momentCritical exponentCrystallographyMagnetic susceptibilityPhysics

摘要: We present a study of the magnetic properties ${\mathrm{Zn}}_{1\ensuremath{-}x}{\mathrm{Mn}}_{x}{\mathrm{In}}_{2}{\mathrm{Te}}_{4}$ diluted semiconductor for concentrations $0.3l~xl~1.0.$ Samples with $xl~0.5$ displayed paramagnetic behavior down to lowest experimental temperature (1.8 K), whereas spin-glass transition was observed $xg0.5$ at temperatures $2.5 \mathrm{K}l~Tl~3.8 \mathrm{K},$ depending on $\mathrm{Mn}$ content. The effective moment ${\ensuremath{\mu}}_{\mathrm{eff}}=5.80(2){\ensuremath{\mu}}_{B},$ calculated from high-temperature susceptibility, corresponds ${3d}^{5}$ $(S=\frac{5}{2})$ configuration ${\mathrm{Mn}}^{2+}.$ For sample composition $x=0.9,$ in-phase component ac susceptibility has been analyzed according conventional power-law dynamics, obtaining freezing ${T}_{f}=3.1(2) \mathrm{K}$ and critical exponent $z\ensuremath{\nu}=10.3\ifmmode\pm\else\textpm\fi{}2.$ Low-field dc data show sharp peak $\ensuremath{\sim}3.3 below which strong irreversibility is between zero-field-cooled field-cooled states. Evidence true phase-transition phenomenon given by steep increase nonlinear ${\ensuremath{\chi}}_{\mathrm{nl}}$ when approaching ${T}_{f}$ above. A static scaling yielded values $\ensuremath{\beta}=0.9(1)$ $\ensuremath{\gamma}=3.6(4)$ exponents, gave also proper asymptotic function. These are in good agreement reported other spin-glasses such as ${M}_{1\ensuremath{-}x}{\mathrm{Mn}}_{x}\mathrm{Te}$ $(M=\mathrm{Zn},$ Cd, Hg), constitute evidence three-dimensional ${\mathrm{Zn}}_{1\ensuremath{-}x}{\mathrm{Mn}}_{x}{\mathrm{In}}_{2}{\mathrm{Te}}_{4}.$

参考文章(38)
J A Mydosh, Spin Glasses CRC Press. ,(1993) , 10.1201/9781482295191
A. Mauger, J. Ferré, M. Ayadi, P. Nordblad, Dynamics of the spin-glass freezing in Cd0.6Mn0.4Te. Physical Review B. ,vol. 37, pp. 9022- 9028 ,(1988) , 10.1103/PHYSREVB.37.9022
N. Bontemps, J. Rajchenbach, R. V. Chamberlin, R. Orbach, Dynamic scaling in the Eu0.4Sr0.6S spin-glass Physical Review B. ,vol. 30, pp. 6514- 6520 ,(1984) , 10.1103/PHYSREVB.30.6514
B. Leclercq, C. Rigaux, A. Mycielski, M. Menant, Critical dynamics inCd1−xMnxTe spin glasses Physical Review B. ,vol. 47, pp. 6169- 6172 ,(1993) , 10.1103/PHYSREVB.47.6169
D. Bertrand, A. Mauger, J. Ferré, P. Beauvillain, Critical exponents in Cd1-xMnxTe spin glass. Physical Review B. ,vol. 45, pp. 507- 510 ,(1992) , 10.1103/PHYSREVB.45.507
H. Maletta, W. Felsch, Insulating spin-glass systemEuxSr1−xS Physical Review B. ,vol. 20, pp. 1245- 1260 ,(1979) , 10.1103/PHYSREVB.20.1245
D. N. H. Nam, R. Mathieu, P. Nordblad, N. V. Khiem, N. X. Phuc, Spin-glass dynamics ofLa0.95Sr0.05CoO3 Physical Review B. ,vol. 62, pp. 8989- 8995 ,(2000) , 10.1103/PHYSREVB.62.8989
P Svedlindh, P Nordblad, M.F Hansen, P Jönsson, Spin-glass-like transition in a highly concentrated Fe–C nanoparticle system Journal of Magnetism and Magnetic Materials. ,vol. 226, pp. 1315- 1316 ,(2001) , 10.1016/S0304-8853(00)00838-6
Christopher L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet. Physical Review Letters. ,vol. 62, pp. 2056- 2059 ,(1989) , 10.1103/PHYSREVLETT.62.2056
Y. G. Joh, R. Orbach, G. G. Wood, J. Hammann, E. Vincent, EXTRACTION OF THE SPIN GLASS CORRELATION LENGTH Physical Review Letters. ,vol. 82, pp. 438- 441 ,(1999) , 10.1103/PHYSREVLETT.82.438