作者: Pattaraporn Khuwuthyakorn , Antonio Robles-Kelly , Jun Zhou , None
DOI: 10.1007/978-3-642-11568-4_8
关键词: Hyperspectral imaging 、 Cognitive neuroscience of visual object recognition 、 Artificial intelligence 、 Harmonic analysis 、 Affine transformation 、 Computer vision 、 Context (language use) 、 Mathematics 、 Transformation geometry 、 Image processing 、 Hilbert space
摘要: This chapter focuses on the problem of recovering a hyperspectral image descriptor based upon harmonic analysis. It departs from use integral transforms to model images in terms probability distributions. provides link between analysis and affine geometric transformations object surface planes scene. Moreover, permits study these descriptors context Hilbert spaces. This, turn, connection functional capture spectral cross-correlation bands for generation with high energy compaction ratio. Thus, can be computed orthogonal bases capable capturing space wavelength correlation spectra imagery under study. We illustrate utility our purpose recognition dataset real-world objects compare results those yielded using an alternative.