An analytical description of the time-integrated Brownian bridge

作者: Steffie Van Nieuland , Jan M. Baetens , Hans De Meyer , Bernard De Baets

DOI: 10.1007/S40314-015-0250-3

关键词: Numerical integrationData pointProbability density functionBrownian excursionBrownian bridgeMathematicsStatistical physicsMarginal distributionMoment (mathematics)EconometricsNormal distribution

摘要: In animal movement research, the probability density function (PDF) of time-integrated Brownian bridge (TIBB) is used to delineate important regions on basis tracking data. Here, it assumed that an performs a between data points. As such, location at any moment in time individual performing described by normal distribution. The (time-independent) marginal given point, i.e., value PDF TIBB obtained averaging these distributions over time. To best our knowledge, thus far always computed through use numerical integration methods. we demonstrate nevertheless possible derive its analytical expression. Although two-dimensional setting most interesting one for studies, also one- and, general, n-dimensional are considered.

参考文章(21)
Bart Kranstauber, Roland Kays, Scott D. LaPoint, Martin Wikelski, Kamran Safi, A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. Journal of Animal Ecology. ,vol. 81, pp. 738- 746 ,(2012) , 10.1111/J.1365-2656.2012.01955.X
Jim Pitman, The distribution of local times of a Brownian bridge Lecture Notes in Mathematics. ,vol. 33, pp. 388- 394 ,(1999) , 10.1007/BFB0096528
JF Pagès, F Bartumeus, B Hereu, À López-Sanz, J Romero, T Alcoverro, Evaluating a key herbivorous fish as a mobile link: a Brownian bridge approach Marine Ecology Progress Series. ,vol. 492, pp. 199- 210 ,(2013) , 10.3354/MEPS10494
Harvey J. Miller, THE DATA AVALANCHE IS HERE. SHOULDN’T WE BE DIGGING? Journal of Regional Science. ,vol. 50, pp. 181- 201 ,(2010) , 10.1111/J.1467-9787.2009.00641.X
Hall Sawyer, Matthew J. Kauffman, Ryan M. Nielson, Jon S. Horne, Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecological Applications. ,vol. 19, pp. 2016- 2025 ,(2009) , 10.1890/08-2034.1
A N Borodin, Brownian local time Russian Mathematical Surveys. ,vol. 44, pp. 1- 51 ,(1989) , 10.1070/RM1989V044N02ABEH002050
Jun Yan, Yung-wei Chen, Kirstin Lawrence-Apfel, Isaac M. Ortega, Vladimir Pozdnyakov, Scott Williams, Thomas Meyer, A moving–resting process with an embedded Brownian motion for animal movements Population Ecology. ,vol. 56, pp. 401- 415 ,(2014) , 10.1007/S10144-013-0428-8
Vladimir Pozdnyakov, Thomas Meyer, Yu-Bo Wang, Jun Yan, On modeling animal movements using Brownian motion with measurement error Ecology. ,vol. 95, pp. 247- 253 ,(2014) , 10.1890/13-0532.1
Edward W. Ng, Murray Geller, A table of integrals of the Error functions Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences. ,vol. 73B, pp. 1- ,(1969) , 10.6028/JRES.073B.001