Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion

作者: Arkady Berenstein , Reyer Sjamaar

DOI: 10.1090/S0894-0347-00-00327-1

关键词: Schubert calculusOrbit (control theory)MathematicsPolytopeProjection (mathematics)AlgebraPure mathematicsMoment mapGroup (mathematics)Lie groupFlag (linear algebra)

摘要: Consider a compact Lie group and closed subgroup. Generalizing result of Klyachko, we give necessary sufficient criterion for coadjoint orbit the subgroup to be contained in projection given ambient group. The is couched terms ``relative'' Schubert calculus flag varieties two groups.

参考文章(18)
Prakash Belkale, Local Systems on $\mathbb P$1 − S for S a Finite Set Compositio Mathematica. ,vol. 129, pp. 67- 86 ,(2001) , 10.1023/A:1013195625868
Michel Demazure, Désingularisation des variétés de Schubert généralisées Annales Scientifiques De L Ecole Normale Superieure. ,vol. 7, pp. 53- 88 ,(1974) , 10.24033/ASENS.1261
Manfred Kr�mer, Über Untergruppen kompakter Liegruppen als Isotropiegruppen bei linearen Aktionen Mathematische Zeitschrift. ,vol. 147, pp. 207- 224 ,(1976) , 10.1007/BF01214079
Piotr Pragacz, Algebro — Geometric applications of schur s- and q-polynomials Springer Berlin Heidelberg. pp. 130- 191 ,(1991) , 10.1007/BFB0083503
David Mumford, Geometric Invariant Theory ,(1965)
Allen Knutson, Terence Tao, The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture Journal of the American Mathematical Society. ,vol. 12, pp. 1055- 1090 ,(1999) , 10.1090/S0894-0347-99-00299-4
E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras Trans.Am.Math.Soc.Ser.2. ,vol. 6, pp. 111- 244 ,(1957)
V. Guillemin, S. Sternberg, Convexity properties of the moment mapping. II Inventiones Mathematicae. ,vol. 77, pp. 533- 546 ,(1982) , 10.1007/BF01388837