Gromov-Witten/pairs correspondence for the quintic 3-fold

作者: R. Pandharipande , A. Pixton

DOI: 10.1090/JAMS/858

关键词: Quintic functionDescendentMathematicsMathematical analysisRational functionInvariant (mathematics)Pure mathematics

摘要: We use the Gromov-Witten/Pairs descendent correspondence for toric 3-folds and degeneration arguments to establish GW/P several compact Calabi-Yau (including all CY complete intersections in products of projective spaces). A crucial aspect proof is study descendents relative geometries. Projective bundles over surfaces a section play special role. The provides structure result Gromov-Witten invariants fixed curve class. After change variables, series rational function variable −q = eiu invariant under q ↔ q−1.

参考文章(39)
R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces arXiv: Algebraic Geometry. ,(2014) , 10.1017/FMP.2016.2
Jun Li, A Degeneration Formula of GW-Invariants Journal of Differential Geometry. ,vol. 60, pp. 199- 293 ,(2002) , 10.4310/JDG/1090351102
Iman Setayesh, Relative Hilbert Scheme of Points arXiv: Algebraic Geometry. ,(2010) , 10.2969/JMSJ/06831325
Rahul Pandharipande, A. Pixton, Descendents on local curves: Stationary theory arXiv: Algebraic Geometry. pp. 283- 307 ,(2012) , 10.4171/119
R. Pandharipande, R. P. Thomas, 13/2 ways of counting curves arXiv: Algebraic Geometry. ,(2011) , 10.1017/CBO9781107279544.007
Davesh Maulik, Alexei Oblomkov, Quantum cohomology of the Hilbert scheme of points on A_n-resolutions arXiv: Algebraic Geometry. ,(2008) , 10.1090/S0894-0347-09-00632-8
Jun Li, Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties Journal of the American Mathematical Society. ,vol. 11, pp. 119- 174 ,(1998) , 10.1090/S0894-0347-98-00250-1
K. Behrend, Gromov-Witten invariants in algebraic geometry Inventiones Mathematicae. ,vol. 127, pp. 601- 617 ,(1997) , 10.1007/S002220050132
Rahul PANDHARIPANDE, Aaron PIXTON, Descendent theory for stable pairs on toric 3-folds Journal of The Mathematical Society of Japan. ,vol. 65, pp. 1337- 1372 ,(2013) , 10.2969/JMSJ/06541337
A. Okounkov, R. Pandharipande, Virasoro constraints for target curves Inventiones Mathematicae. ,vol. 163, pp. 47- 108 ,(2006) , 10.1007/S00222-005-0455-Y