Genetic algorithm optimized feature transformation: a comparison with different classifiers

作者: Zhijian Huang , Min Pei , Erik Goodman , Yong Huang , Gaoping Li

DOI: 10.1007/3-540-45110-2_108

关键词: Dimensionality reductionArtificial intelligencek-nearest neighbors algorithmPrincipal component analysisLinear classifierFeature vectorFeature selectionClassifier (UML)Linear discriminant analysisData miningMathematicsPattern recognition

摘要: When using a Genetic Algorithm (GA) to optimize the feature space of pattern classification problems, performance improvement is not only determined by data set used, but also depends on classifier. This work compares improvements achieved GA-optimized transformations several simple classifiers. Some traditional transformation techniques, such as Principal Components Analysis (PCA) and Linear Discriminant (LDA) are tested see their effects GA optimization. The results based some real-world five benchmark sets from UCI repository show that after in reverse ratio with original rate if classifier used alone. It shown performing PCA LDA prior optimization improved final result.

参考文章(18)
William F. Punch, Richard J. Enbody, Paul D. Hovland, Min Pei, Erik D. Goodman, Lai Chia-Shun, Further Research on Feature Selection and Classification Using Genetic Algorithms international conference on genetic algorithms. pp. 557- 564 ,(1993)
Ron Kohavi, George H. John, The Wrapper Approach Springer, Boston, MA. pp. 33- 50 ,(1998) , 10.1007/978-1-4615-5725-8_3
Peter A. Flach, Thomas Gärtner, WBCsvm: Weighted Bayesian Classification based on Support Vector Machines international conference on machine learning. pp. 154- 161 ,(2001)
George H John, Ron Kohavi, Karl Pfleger, None, Irrelevant Features and the Subset Selection Problem Machine Learning Proceedings 1994. pp. 121- 129 ,(1994) , 10.1016/B978-1-55860-335-6.50023-4
S. Bandyopadhyay, C.A. Murthy, S.K. Pal, Pattern classification with genetic algorithms Pattern Recognition Letters. ,vol. 16, pp. 801- 808 ,(1995) , 10.1016/0167-8655(95)00052-I
MTW, Huan Liu, Hiroshi Motoda, Feature Extraction, Construction and Selection: A Data Mining Perspective Journal of the American Statistical Association. ,vol. 94, pp. 1390- ,(1998) , 10.2307/2669967
W. Siedlecki, J. Sklansky, A note on genetic algorithms for large-scale feature selection Pattern Recognition Letters. ,vol. 10, pp. 335- 347 ,(1989) , 10.1016/0167-8655(89)90037-8
Olvi L. Mangasarian, W. Nick Street, William H. Wolberg, Breast Cancer Diagnosis and Prognosis Via Linear Programming Operations Research. ,vol. 43, pp. 570- 577 ,(1995) , 10.1287/OPRE.43.4.570
M. Prakash, M. Narasimha Murty, A genetic approach for selection of (near-) optimal subsets of principal components for discrimination Pattern Recognition Letters. ,vol. 16, pp. 781- 787 ,(1995) , 10.1016/0167-8655(95)00041-E
R. Srikanth, R. George, N. Warsi, D. Prabhu, F.E. Petry, B.P. Buckles, A variable-length genetic algorithm for clustering and classification Pattern Recognition Letters. ,vol. 16, pp. 789- 800 ,(1995) , 10.1016/0167-8655(95)00043-G