Palladium electrodissolution from model surfaces and nanoparticles

作者: Enrico Pizzutilo , Simon Geiger , Simon J. Freakley , Andrea Mingers , Serhiy Cherevko

DOI: 10.1016/J.ELECTACTA.2017.01.127

关键词: DissolutionProton exchange membrane fuel cellHorizontal scan ratePalladiumNanoparticlePlatinumMetallurgyCatalysisChemistryElectrochemistryInorganic chemistry

摘要: Abstract Palladium (Pd) is considered as a possible candidate catalyst for proton exchange membrane fuel cells (PEMFCs) due to its high activity and affordable price compared platinum (Pt). However, the stability of Pd known be limited, yet still not fully understood. In this work, dissolution studied in acidic media using an online inductively coupled plasma mass spectrometry (ICP-MS) combination with electrochemical scanning flow cell (SFC). Crucial parameters influencing like potential scan rate, upper limit (UPL) electrolyte composition are on bulk polycrystalline (poly-Pd). Furthermore, comparison supported high-surface area carried out use industrial applications. For aim, carbon nanocatalyst (Pd/C) synthesized performance that poly-Pd. Our results evidence transient promoted by three main contributions (one anodic two cathodic). At potentials below 1.5 V RHE dominating mechanism, whereas at higher cathodic mechanisms prevail. On basis obtained results, model thereafter proposed explain dissolution.

参考文章(76)
K. Juodkazis, J. Juodkazyte˙, B. Sebeka, G. Stalnionis, A. Lukinskas, Anodic Dissolution of Palladium in Sulfuric Acid: An Electrochemical Quartz Crystal Microbalance Study Russian Journal of Electrochemistry. ,vol. 39, pp. 954- 959 ,(2003) , 10.1023/A:1025724021078
F. A. Lewis, The palladium hydrogen system Academic Press. ,(1967)
Hui Meng, Dongrong Zeng, Fangyan Xie, Recent Development of Pd-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells Catalysts. ,vol. 5, pp. 1221- 1274 ,(2015) , 10.3390/CATAL5031221
Lj. M. Vracar, D. B. Sepa, A. Damjanovic, Palladium Electrode in Oxygen‐Saturated Aqueous Solutions Reduction of Oxygen in the Activation‐Controlled Region Journal of The Electrochemical Society. ,vol. 133, pp. 1835- 1839 ,(1986) , 10.1149/1.2109032
Carl Wagner, Kinetik und Mechanismus von Umsetzungen zwischen flüssigen Legierungen und Schlacken Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie. ,vol. 62, pp. 386- 389 ,(1958) , 10.1002/BBPC.19580620330
Brian C. H. Steele, Angelika Heinzel, Materials for fuel-cell technologies Nature. ,vol. 414, pp. 345- 352 ,(2001) , 10.1038/35104620
Lj. M. Vracar, D. B. Sepa, A. Damjanovic, Palladium Electrode in Oxygen Saturated Solutions Rest Potentials in Solutions of Different pH Journal of The Electrochemical Society. ,vol. 134, pp. 1695- 1697 ,(1987) , 10.1149/1.2100738
Gareth P. Keeley, Serhiy Cherevko, Karl J. J. Mayrhofer, The Stability Challenge on the Pathway to Low and Ultra-Low Platinum Loading for Oxygen Reduction in Fuel Cells ChemElectroChem. ,vol. 3, pp. 51- 54 ,(2016) , 10.1002/CELC.201500425
Shirlaine Koh, Peter Strasser, Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. Journal of the American Chemical Society. ,vol. 129, pp. 12624- 12625 ,(2007) , 10.1021/JA0742784