$C^*$-algebras from planar algebras I: canonical $C^*$-algebras associated to a planar algebra

作者: Michael Hartglass , David Penneys , David Penneys

DOI:

关键词: Series (mathematics)Pure mathematicsFree graphMathematicsToeplitz matrixSubspace topologyPlanar algebra

摘要: From a planar algebra, we give functorial construction to produce numerous associated $C^*$-algebras. Our main is Hilbert $C^*$-bimodule with canonical real subspace which produces Pimsner-Toeplitz, Cuntz-Pimsner, and generalized free semicircular By compressing this system, obtain various $C^*$-algebras, including Doplicher-Roberts algebras, Guionnet-Jones-Shlyakhtenko universal (Toeplitz-)Cuntz-Krieger the newly introduced graph algebras. This first article in series studying $C^*$-algebras algebra.

参考文章(30)
Joachim Cuntz, Simple $C^*$-algebras generated by isometries Communications in Mathematical Physics. ,vol. 57, pp. 173- 185 ,(1977) , 10.1007/BF01625776
Alex Kumjian, David Pask, Iain Raeburn, Jean Renault, Graphs, Groupoids, and Cuntz–Krieger Algebras Journal of Functional Analysis. ,vol. 144, pp. 505- 541 ,(1997) , 10.1006/JFAN.1996.3001
Sergio Doplicher, John E. Roberts, A new duality theory for compact groups Inventiones Mathematicae. ,vol. 98, pp. 157- 218 ,(1989) , 10.1007/BF01388849
Vaughan Jones, Dimitri Shlyakhtenko, Kevin Walker, AN ORTHOGONAL APPROACH TO THE SUBFACTOR OF A PLANAR ALGEBRA Pacific Journal of Mathematics. ,vol. 246, pp. 187- 197 ,(2010) , 10.2140/PJM.2010.246.187
Klaus Thomsen, KMS weights on groupoid and graph C*-algebras arXiv: Operator Algebras. ,(2013)
V. F. R. Jones, Index for subfactors Inventiones Mathematicae. ,vol. 72, pp. 1- 25 ,(1983) , 10.1007/BF01389127
A. Guionnet, V. Jones, D. Shlyakhtenko, A semi-finite algebra associated to a subfactor planar algebra Journal of Functional Analysis. ,vol. 261, pp. 1345- 1360 ,(2011) , 10.1016/J.JFA.2011.05.004
Scott Morrison, Emily Peters, Noah Snyder, Skein theory for the D_2pi planar algebras Journal of Pure and Applied Algebra. ,vol. 214, pp. 117- 139 ,(2010) , 10.1016/J.JPAA.2009.04.010
David Pask, Iain Raeburn, On the K-theory of Cuntz-Krieger algebras Publications of The Research Institute for Mathematical Sciences. ,vol. 32, pp. 415- 443 ,(1996) , 10.2977/PRIMS/1195162850
David Penneys, Stephen Bigelow, Principal graph stability and the jellyfish algorithm arXiv: Operator Algebras. ,(2012)