New generic algorithms for hard knapsacks

作者: Nick Howgrave-Graham , Antoine Joux

DOI: 10.1007/978-3-642-13190-5_12

关键词: Current (mathematics)TildeMathematicsGeneric algorithmsPriority queueCombinatoricsBirthday problemKnapsack problemHeuristic (computer science)Lattice reduction

摘要: In this paper, we study the complexity of solving hard knapsack problems, i.e., knapsacks with a density close to 1 where lattice-based low attacks are not an option. For such knapsacks, current state-of-the-art is 31-year old algorithm by Schroeppel and Shamir which based on birthday paradox techniques yields running time $\tilde{O}(2^{n/2})$ for n elements uses $\tilde{O}(2^{n/4})$ storage. We propose here two new algorithms improve bound, finally lowering down either $\tilde{O} (2^{0.385\, n})$ or (2^{0.3113\, under reasonable heuristic. also demonstrate practicality these implementation.

参考文章(24)
Antoine Joux, Louis Granboulan, A practical attack against knapsack based hash functions theory and application of cryptographic techniques. pp. 58- 66 ,(1994) , 10.1007/BFB0053424
Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, Alon Rosen, SWIFFT: A Modest Proposal for FFT Hashing fast software encryption. pp. 54- 72 ,(2008) , 10.1007/978-3-540-71039-4_4
Phong Q. Nguyen, Igor E. Shparlinski, Jacques Stern, Distribution of Modular Sums and the Security of the Server Aided Exponentiation Workshop on Cryptography and Computational Number Theory (CCNT 99). pp. 331- 342 ,(2001) , 10.1007/978-3-0348-8295-8_24
Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, William Whyte, Choosing NTRUEncrypt Parameters in Light of Combined Lattice Reduction and MITM Approaches Applied Cryptography and Network Security. pp. 437- 455 ,(2009) , 10.1007/978-3-642-01957-9_27
Nick Howgrave-Graham, A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU Advances in Cryptology - CRYPTO 2007. pp. 150- 169 ,(2007) , 10.1007/978-3-540-74143-5_9
David Wagner, A Generalized Birthday Problem Advances in Cryptology — CRYPTO 2002. pp. 288- 304 ,(2002) , 10.1007/3-540-45708-9_19
Ivan Bjerre Damgård, A design principle for hash functions international cryptology conference. pp. 416- 427 ,(1989) , 10.1007/0-387-34805-0_39
Paul Camion, Jacques Patarin, The knapsack hash function proposed at Crypto'89 can be broken theory and application of cryptographic techniques. pp. 39- 53 ,(1991) , 10.1007/3-540-46416-6_3
Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-Peter Schnorr, Jacques Stern, Improved low-density subset sum algorithms Computational Complexity. ,vol. 2, pp. 111- 128 ,(1992) , 10.1007/BF01201999
Richard Schroeppel, Adi Shamir, A $T = O(2^{n/2} )$, $S = O(2^{n/4} )$ Algorithm for Certain NP-Complete Problems SIAM Journal on Computing. ,vol. 10, pp. 456- 464 ,(1981) , 10.1137/0210033