作者: Vladimir N. Chernega , Olga V. Man’ko , Olga V. Man’ko , Vladimir I. Man’ko , Vladimir I. Man’ko
DOI: 10.1007/S10946-019-09778-4
关键词: Observable 、 Random variable 、 Quantum system 、 Statistical mechanics 、 Quantum state 、 Probability distribution 、 Statistical physics 、 Qubit 、 Hidden variable theory 、 Mathematics
摘要: We develop an approach where the quantum system states and observables are described as in classical statistical mechanics – identified with probability distributions observables, random variables. An example of spin-1/2 state is considered. show that triada Malevich’s squares can be used to illustrate qubit state. formulate superposition principle terms probabilities determining states. New formulas for nonlinear addition rules providing associated interference obtained. The evolution equation given form a kinetic distribution