Kinetic Plasma Physics

作者: Don B. Melrose

DOI: 10.1007/3-540-31627-2_2

关键词: Alfvén waveKinetic energyClassical mechanicsPlasmaPosition and momentum spacePhysicsRadiationSolar windDistribution functionKinetic theory of gases

摘要: In the kinetic theory of plasmas, particles are described by distribution functions whose evolution is determined equations. The spectrum fluctuations in plasma includes distributions weakly damped waves. equation for may be averaged over these to find equations, sometimes called quasilinear These equations describe slow waves, which or grow, and particles, diffuse momentum space. this lecture course, a general derivation given first two lectures, used treat resonant scattering related processes next three lectures. last four lectures concerned with radiation various astrophysical sources. Radiation also treated using outlined

参考文章(143)
K. Hasselmann, G. Wibberenz, SCATTERING OF CHARGED PARTICLES BY RANDOM ELECTROMAGNETIC FIELDS. Z. Geophys., 34: 353-88 (1968).. ,(1968)
L. Ball, A. Achterberg, Particle acceleration at superluminal quasi-perpendicular shocks. Application to SN1978K and SN1987A Astronomy and Astrophysics. ,vol. 285, pp. 687- 704 ,(1994)
N. S. Kardashev, NONSTATIONARINESS OF SPECTRA OF YOUNG SOURCES OF NONTHERMAL RADIO EMISSION Soviet Astron. AJ (English Transl.). ,vol. 39, pp. 317- ,(1962)
Melvyn L. Goldstein, C. K. Goertz, Physics of the Jovian magnetosphere. 9. Theories of radio emissions and plasma waves. Physics of the Jovian Magnetosphere. pp. 317- 352 ,(1983) , 10.1017/CBO9780511564574.011
E. Asseo, G. Pelletier, H. Sol, A non-linear radio pulsar emission mechanism Monthly Notices of the Royal Astronomical Society. ,vol. 247, pp. 529- 548 ,(1990)
Physics of the sun Physics of the Sun. Volume 1. ,vol. 1, ,(1985) , 10.1007/978-94-009-5253-9
ENRICO Fermi, On the Origin of the Cosmic Radiation Physical Review. ,vol. 75, pp. 1169- 1174 ,(1949) , 10.1103/PHYSREV.75.1169
G. Bekefi, Howard H. C. Chang, Radiation Processes in Plasmas Physics Today. ,vol. 22, pp. 103- 107 ,(1969) , 10.1063/1.3035330