Convolutional Neural Networks for Phytoplankton identification and classification

作者: Lara Lloret , Ignacio Heredia , Fernando Aguilar , Elisabeth Debusschere , Klaas Deneudt

DOI: 10.3897/BISS.2.25762

关键词: PhytoplanktonConvolutional neural networkArtificial intelligenceDeep learningPattern recognitionIdentification (information)Environmental science

摘要:

参考文章(5)
M Edwards, G Beaugrand, PC Reid, AA Rowden, MB Jones, Ocean climate anomalies and the ecology of the North Sea Marine Ecology Progress Series. ,vol. 239, pp. 1- 10 ,(2002) , 10.3354/MEPS239001
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, L.-F. Artigas, High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing Biogeosciences. ,vol. 12, pp. 4051- 4066 ,(2015) , 10.5194/BG-12-4051-2015
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition computer vision and pattern recognition. pp. 770- 778 ,(2016) , 10.1109/CVPR.2016.90
Eva Álvarez, Marta Moyano, Ángel López-Urrutia, Enrique Nogueira, Renate Scharek, Routine determination of plankton community composition and size structure: a comparison between FlowCAM and light microscopy Journal of Plankton Research. ,vol. 36, pp. 170- 184 ,(2014) , 10.1093/PLANKT/FBT069
Elisa Capuzzo, Christopher P Lynam, Jon Barry, David Stephens, Rodney M Forster, Naomi Greenwood, Abigail McQuatters‐Gollop, Tiago Silva, Sonja M van Leeuwen, Georg H Engelhard, None, A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment Global Change Biology. ,vol. 24, pp. 352- 364 ,(2018) , 10.1111/GCB.13916