Parallel Pseudorandom Number Generation Using Additive Lagged-Fibonacci Recursions

作者: Michael Mascagni , M. L. Robinson , Daniel V. Pryor , Steven A. Cuccaro

DOI: 10.1007/978-1-4612-2552-2_17

关键词: ArithmeticRandom seedPseudorandom generator theoremEquivalence classLavarandPseudorandom generators for polynomialsPseudorandom number generatorPseudorandomnessPseudorandom generatorMathematics

摘要: We study the suitability of additive lagged-Fibonacci pseudorandom number generator for parallel computation. This has a relatively short period with respect to size its seed. However, is more than made up huge full-period cycles it contains. call these different equivalence classes. show how enumerate classes and compute seeds select given class. The use gives an explicit parallelization suitable fully reproducible asynchronous MIMD implementation. To explore such implementation we introduce exponential sum measure quality generators used in serial or parallel. then prove first non-trivial results are aware on this quality.

参考文章(14)
Daniel V. Pryor, Michael Mascagni, Steven A. Cuccaro, Techniques for Testing the Quality of Parallel Pseudorandom Number Generators. PPSC. pp. 279- 284 ,(1995)
Rudolf Lidl, Harald Niederreiter, Introduction to finite fields and their applications The Mathematical Gazette. ,vol. 72, pp. 335- ,(1986) , 10.1017/CBO9781139172769
Harald Niederreiter, Lauwerens Kuipers, Uniform Distribution of Sequences ,(2006)
Michael Mascagni, Steven A. Cuccaro, Daniel V. Pryor, M.L. Robinson, A Fast, High Quality, and Reproducible Parallel Lagged-Fibonacci Pseudorandom Number Generator Journal of Computational Physics. ,vol. 119, pp. 211- 219 ,(1995) , 10.1006/JCPH.1995.1130
Jerome Spanier, Ely M. Gelbard, George Bell, Monte Carlo Principles and Neutron Transport Problems ,(1969)
George Marsaglia, Liang-Huei Tsay, Matrices and the structure of random number sequences Linear Algebra and its Applications. ,vol. 67, pp. 147- 156 ,(1985) , 10.1016/0024-3795(85)90192-2
Robert C. Tausworthe, Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation. ,vol. 19, pp. 201- 209 ,(1965) , 10.1090/S0025-5718-1965-0184406-1
Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers Bulletin of the American Mathematical Society. ,vol. 84, pp. 957- 1042 ,(1978) , 10.1090/S0002-9904-1978-14532-7