An Estimated Likelihood Method for Continuous Outcome Regression Models With Outcome-Dependent Sampling

作者: Mark A Weaver , Haibo Zhou

DOI: 10.1198/016214504000001853

关键词: CovariateRegression analysisMathematicsEnvironmental exposureSampling (statistics)Simple random sampleSample size determinationPopulationEconometricsSampling biasStatisticsStatistics, Probability and UncertaintyStatistics and Probability

摘要: Many biomedical observational studies attempt to relate a continuous outcome an environmental exposure and other important covariates. If the is easier or cheaper measure relative of interest, then may be observed for every member finite-study population, whereas measurements obtained only relatively small subsample this population. Rather than selecting simple random individuals measurement, investigators enhance study efficiency by allowing selection probabilities depend on outcomes; we refer such sampling schemes as outcome-dependent (ODS). Standard estimation methods that ignore ODS design will yield biased inconsistent parameter estimates. Furthermore, it generally desirable use estimators incorporate all available data analyses restricted subjects with complete information are inefficient. To end, extend estimated likel...

参考文章(37)
James M. Robins, Fushing Hsieh, Whitney Newey, Semiparametric Efficient Estimation of a Conditional Density with Missing or Mismeasured Covariates Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 57, pp. 409- 424 ,(1995) , 10.1111/J.2517-6161.1995.TB02036.X
D. Holt, Regression Analysis of Data from Complex Surveys Journal of the Royal Statistical Society: Series A (General). ,vol. 143, pp. 474- 487 ,(1980) , 10.2307/2982065
G. Nathan, D. Holt, The Effect of Survey Design on Regression Analysis Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 42, pp. 377- 386 ,(1980) , 10.1111/J.2517-6161.1980.TB01139.X
Stephen R. Cosslett, 1 Estimation from endogenously stratified samples Handbook of Statistics. ,vol. 11, pp. 1- 43 ,(1993) , 10.1016/S0169-7161(05)80036-7
F. W. Scholz, Maximum Likelihood Estimation Wiley StatsRef: Statistics Reference Online. ,(2006) , 10.1002/0471667196.ESS1571.PUB2
R. J. Carroll, M. P. Wand, Semiparametric Estimation in Logistic Measurement Error Models Journal of the royal statistical society series b-methodological. ,vol. 53, pp. 573- 585 ,(1991) , 10.1111/J.2517-6161.1991.TB01846.X
Julio da Motta Singer, Pranab Kumar Sen, Large Sample Methods in Statistics: An Introduction With Applications ,(1993)
J. M. Singer, P. K. Sen, H. MacGillivray, Large sample methods in statistics ,(1993)
Robert I. Jennrich, Asymptotic Properties of Non-Linear Least Squares Estimators Annals of Mathematical Statistics. ,vol. 40, pp. 633- 643 ,(1969) , 10.1214/AOMS/1177697731
Nilanjan Chatterjee, Yi-Hau Chen, Norman E Breslow, A Pseudoscore Estimator for Regression Problems With Two-Phase Sampling Journal of the American Statistical Association. ,vol. 98, pp. 158- 168 ,(2003) , 10.1198/016214503388619184