Linearized stability analysis of surface diffusion for hypersurfaces with boundary contact

作者: Daniel Depner

DOI: 10.1002/MANA.201100027

关键词: MathematicsBalanced flowBoundary (topology)Partial differential equationSurface diffusionParametrizationRight angleMathematical analysisDomain (mathematical analysis)Work (thermodynamics)

摘要: The linearized stability of stationary solutions for surface diffusion is studied. We consider hypersurfaces that lie inside a fixed domain, touch its boundary with right angle and fulfill no-flux condition. formulate the geometric evolution law as partial differential equation help parametrization from Vogel [Vog00], which takes care possible curved boundary. For analysis we identify in work Garcke, Ito Kohsaka [GIK05] problem an H

参考文章(16)
Harald Garcke, Kazuo Ito, Yoshihito Kohsaka, Linearized Stability Analysis of Stationary Solutions for Surface Diffusion with Boundary Conditions SIAM Journal on Mathematical Analysis. ,vol. 36, pp. 1031- 1056 ,(2005) , 10.1137/S0036141003437939
Thomas I. Vogel, Sufficient conditions for capillary surfaces to be energy minima Pacific Journal of Mathematics. ,vol. 194, pp. 469- 489 ,(2000) , 10.2140/PJM.2000.194.469
J. W. Cahn, C. M. Elliott, A. Novick-Cohen, The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature European Journal of Applied Mathematics. ,vol. 7, pp. 287- 301 ,(1996) , 10.1017/S0956792500002369
Jean E. Taylor, John W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows Journal of Statistical Physics. ,vol. 77, pp. 183- 197 ,(1994) , 10.1007/BF02186838
Fabrizio Dav�, Morton E. Gurtin, On the motion of a phase interface by surface diffusion Zeitschrift für Angewandte Mathematik und Physik. ,vol. 41, pp. 782- 811 ,(1990) , 10.1007/BF00945835
W. W. Mullins, Theory of Thermal Grooving Journal of Applied Physics. ,vol. 28, pp. 333- 339 ,(1957) , 10.1063/1.1722742
John W. Barrett, Harald Garcke, Robert Nürnberg, On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations SIAM Journal on Scientific Computing. ,vol. 29, pp. 1006- 1041 ,(2007) , 10.1137/060653974
John Barrett, Harald Garcke, Robert Nürnberg, Parametric Approximation of Surface Clusters driven by Isotropic and Anisotropic Surface Energies Interfaces and Free Boundaries. ,vol. 12, pp. 187- 234 ,(2010) , 10.4171/IFB/232
Antonio Ros, Enaldo Vergasta, Stability for hypersurfaces of constant mean curvature with free boundary Geometriae Dedicata. ,vol. 56, pp. 19- 33 ,(1995) , 10.1007/BF01263611