Boosting of Maximal Figure of Merit Classifiers for Automatic Image Annotation

作者: Filippo Vella , Chin-Hui Lee , Salvatore Gaglio

DOI: 10.1109/ICIP.2007.4379131

关键词: Pattern recognitionFigure of meritRandom subspace methodComputer scienceBoosting methods for object categorizationDiscriminative modelBoosting (machine learning)Artificial intelligenceText miningAutomatic image annotationMachine learning

摘要: Visual information contained in a scene is very complex and can be represented with multiple features describing aspects of the entire information. In this paper we propose boosting approach to automatic image annotation by building strong classifiers based on collections weak concept each collection focused single visual feature. The are trained maximal figure-of-merit learning approach. By exploiting procedure allows build able pick most discriminative feature for specific task.

参考文章(15)
Marina Skurichina, Robert P. W. Duin, Boosting in Linear Discriminant Analysis Multiple Classifier Systems. pp. 190- 199 ,(2000) , 10.1007/3-540-45014-9_18
J. Lu, K.N. Plataniotis, A.N. Venetsanopoulos, Boosting linear discriminant analysis for face recognition international conference on image processing. ,vol. 1, pp. 657- 660 ,(2003) , 10.1109/ICIP.2003.1247047
Jiwoon Jeon, R. Manmatha, Using Maximum Entropy for Automatic Image Annotation conference on image and video retrieval. pp. 24- 32 ,(2004) , 10.1007/978-3-540-27814-6_7
P. Duygulu, K. Barnard, J. F. G. de Freitas, D. A. Forsyth, Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary european conference on computer vision. ,vol. 2353, pp. 97- 112 ,(2002) , 10.1007/3-540-47979-1_7
Yoav Freund, Robert E Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting conference on learning theory. ,vol. 55, pp. 119- 139 ,(1997) , 10.1006/JCSS.1997.1504
David M Blei, Michael I Jordan, None, Modeling annotated data international acm sigir conference on research and development in information retrieval. pp. 127- 134 ,(2003) , 10.1145/860435.860460
Fabrizio Sebastiani, Machine learning in automated text categorization ACM Computing Surveys. ,vol. 34, pp. 1- 47 ,(2002) , 10.1145/505282.505283
J.R. Bellegarda, Exploiting latent semantic information in statistical language modeling Proceedings of the IEEE. ,vol. 88, pp. 1279- 1296 ,(2000) , 10.1109/5.880084
Sheng Gao, Wen Wu, Chin-Hui Lee, Tat-Seng Chua, A MFoM learning approach to robust multiclass multi-label text categorization international conference on machine learning. pp. 42- ,(2004) , 10.1145/1015330.1015361
Peter Carbonetto, Nando de Freitas, Kobus Barnard, A Statistical Model for General Contextual Object Recognition european conference on computer vision. ,vol. 3021, pp. 350- 362 ,(2004) , 10.1007/978-3-540-24670-1_27