Schur–Weyl reciprocity between quantum groups and Hecke algebras of type G(p,p,n)

作者: Jun Hu , Toshiaki Shoji

DOI: 10.1016/J.JALGEBRA.2005.06.008

关键词: Hecke algebraMathematicsGroup algebraFiltered algebraQuantum groupCellular algebraCombinatoricsAutomorphismCyclic groupPure mathematicsUniversal enveloping algebra

摘要: Abstract Let U q ( gl m ⊕ p ) be the quantized universal enveloping algebra of . θ automorphism which is defined on generators by E i ↦ − , F K j for any ∈ Z / ∖ { 0 ¯ … 1 } and H n Hecke type G with parameters e where a primitive pth root unity. In this paper we establish Schur–Weyl reciprocity between twisted tensor product group 〈 〉 (a cyclic order p) using results in [J. Hu, J. Algebra 274 (2004) 446–490].

参考文章(19)
Jie Du, Hebing Rui, Ariki-Koike algebras with semisimple bottoms Mathematische Zeitschrift. ,vol. 233, pp. 807- 830 ,(2000) , 10.1007/S002090050009
Jun Hu, Friederike Stoll, On double centralizer properties between quantum groups and Ariki–Koike algebras Journal of Algebra. ,vol. 275, pp. 397- 418 ,(2004) , 10.1016/J.JALGEBRA.2003.10.026
Richard Dipper, Gordon James, Andrew Mathas, Cyclotomic q –Schur algebras Mathematische Zeitschrift. ,vol. 229, pp. 385- 416 ,(1998) , 10.1007/PL00004665
S. Ariki, K. Koike, A Hecke Algebra of (Z/rZ)Sn and Construction of Its Irreducible Representations Advances in Mathematics. ,vol. 106, pp. 216- 243 ,(1994) , 10.1006/AIMA.1994.1057
S. Ariki, T. Terasoma, H. Yamada, Schur-Weyl Reciprocity for the Hecke Algebra of (Z/rZ) ≀ Sn Journal of Algebra. ,vol. 178, pp. 374- 390 ,(1995) , 10.1006/JABR.1995.1354
George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra Journal of the American Mathematical Society. ,vol. 3, pp. 257- 296 ,(1990) , 10.1090/S0894-0347-1990-1013053-9
Richard Dipper, Andrew Mathas, Morita equivalences of Ariki–Koike algebras Mathematische Zeitschrift. ,vol. 240, pp. 579- 610 ,(2002) , 10.1007/S002090100371
Toshiaki Shoji, Green functions associated to complex reflection groups, II Journal of Algebra. ,vol. 258, pp. 563- 598 ,(2002) , 10.1016/S0021-8693(02)00643-9