Fission modelling with FIFRELIN

作者: Olivier Litaize , Olivier Serot , Léonie Berge

DOI: 10.1140/EPJA/I2015-15177-9

关键词: Nuclear fusionPhotonNeutronGamma rayPhysicsNuclear fissionPrompt neutronNuclear physicsFissionNeutron emission

摘要: The nuclear fission process gives rise to the formation of fragments and emission particles \( (n,\gamma , e^{-})\) . particle from can be prompt delayed. We present here methods used in FIFRELIN code, which simulates component de-excitation process. are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data provided by experiment as well theory. fragment performed within Weisskopf (uncoupled neutron gamma emission) or a Hauser-Feshbach (coupled neutron/gamma statistical usually consider five free parameters that cannot theory experiments order describe initial distributions required code. In first step this set is chosen reproduce very limited target observables. second we increase statistics predict all other observables such neutron, conversion electron spectra but also their function any kind as, for instance, number distributions, average multiplicity mass, charge kinetic energy, so on. Several results related different fissioning systems presented work. goal next decade will i) replace some ingredients calculations when available reliable, ii) support experimentalists design detection prediction necessary beam time count rates measuring emitted coincidence iii) extend model able run calculation no experimental input available, iv) account multiple chance before fission, v) scission neutrons. efforts have already been made phenomenology various parameter libraries electric dipole photon strength functions HFB level densities. First relative theses aspects

参考文章(66)
C. Wagemans, E. Allaert, A. Deruytter, R. Barthélémy, P. Schillebeeckx, Comparison of the energy and mass characteristics of the /sup 239/Pu(n/sub th/,f) and the /sup 240/Pu(sf) fragments Physical Review C. ,vol. 30, pp. 218- 223 ,(1984) , 10.1103/PHYSREVC.30.218
OA Batenkov, GA Boykov, F‐J Hambsch, JH Hamilton, VA Jakovlev, VA Kalinin, AB Laptev, VE Sokolov, AS Vorobyev, Prompt Neutron Emission in the Neutron-Induced Fission of 239Pu and 235U AIP Conference Proceedings. ,vol. 769, pp. 1003- 1006 ,(2005) , 10.1063/1.1945175
Atsushi Matsumoto, Hiroshi Taninaka, Kengo Hashimoto, Takaaki Ohsawa, Monte Carlo simulation of prompt neutron emission during acceleration in fission Journal of Nuclear Science and Technology. ,vol. 49, pp. 782- 792 ,(2012) , 10.1080/00223131.2012.677127
Cyriel Wagemans, The Nuclear Fission Process ,(1991)
Walter Hauser, Herman Feshbach, The Inelastic Scattering of Neutrons Physical Review. ,vol. 87, pp. 366- 373 ,(1952) , 10.1103/PHYSREV.87.366
S. Hilaire, M. Girod, Large-scale mean-field calculations from proton to neutron drip lines using the D1S Gogny force European Physical Journal A. ,vol. 33, pp. 237- 241 ,(2007) , 10.1140/EPJA/I2007-10450-2
R. Vogt, J. Randrup, D. A. Brown, M. A. Descalle, W. E. Ormand, Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n,f) Physical Review C. ,vol. 85, pp. 024608- ,(2012) , 10.1103/PHYSREVC.85.024608
H Naik, R J Singh, R H Iyer, Charge distribution in low energy fission of actinides Journal of Physics G. ,vol. 30, pp. 107- 127 ,(2004) , 10.1088/0954-3899/30/2/010
E. V. Shuryak, J. J. M. Verbaarschot, Screening of the topological charge in a correlated instanton vacuum Physical Review D. ,vol. 52, pp. 295- 306 ,(1995) , 10.1103/PHYSREVD.52.295
R. Billnert, A. Oberstedt, S. Oberstedt, Prompt γ-ray Spectral Data from 252Cf(SF), 235U(nth, f) and 241Pu(nth, f) Physics Procedia. ,vol. 59, pp. 17- 23 ,(2014) , 10.1016/J.PHPRO.2014.10.003