Réseaux bayésiens pour la classification Méthodologie et illustration dans le cadre du diagnostic médical

作者: Philippe Leray , Olivier François

DOI: 10.3166/RIA.18.169-193

关键词: HumanitiesPhilosophy

摘要: Les reseaux bayesiens sont des outils privilegies pour les problemes de diagnostic. Nous dressons dans cet article un panorama algorithmes utilises classiquement la mise en oeuvre le cadre du diagnostic, et plus particulierement diagnostic medical. Pour cela, nous passons revue certain nombre questions methodologiques concernant choix representation densites probabilite (faut-il discretiser variables continues ? utiliser modele gaussien ?) surtout determination structure reseau bayesien naif ou essayer d'apprendre une meilleure a l'aide d'un expert donnees ?). Une etude cas cancer thyroide permettra d'illustrer partie ces interrogations solutions proposees.

参考文章(43)
Michael J. Pazzani, Eamonn J. Keogh, Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. international conference on artificial intelligence and statistics. ,(1999)
Joe Suzuki, Learning Bayesian Belief Networks Based on the MDL Principle : An Efficient Algorithm Using the Branch and Bound Technique IEICE Transactions on Information and Systems. ,vol. 82, pp. 356- 367 ,(1999)
Dan Geiger, David Heckerman, Max Chickering, Learning Bayesian Networks: Search Methods and Experimental Results ,(1995)
T. S. Jaakkola, M. I. Jordan, Variational methods and the QMR-DT database NATO advanced study institute on generalization in neural networks and machine learning. pp. 185- 214 ,(1998)
Basilio Sierra, Iñaki Inza, Pedro Larrañaga, Medical Bayes Networks ISMDA '00 Proceedings of the First International Symposium on Medical Data Analysis. pp. 4- 14 ,(2000) , 10.1007/3-540-39949-6_2
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, Lawrence K Saul, None, An introduction to variational methods for graphical models Machine Learning. ,vol. 37, pp. 105- 161 ,(1999) , 10.1023/A:1007665907178
David Heckerman, Dan Geiger, David M. Chickering, Learning Bayesian networks: The combination of knowledge and statistical data Machine Learning. ,vol. 20, pp. 197- 243 ,(1995) , 10.1007/BF00994016
F.J. Díez, Parameter adjustment in Bayes networks. the generalized noisy OR-gate uncertainty in artificial intelligence. pp. 99- 105 ,(1993) , 10.1016/B978-1-4832-1451-1.50016-0