Nickel sulfide nanocrystals for electrochemical and photoelectrochemical hydrogen generation

作者: Jisun Yoo , In Hye Kwak , Ik Seon Kwon , Kidong Park , Doyeon Kim

DOI: 10.1039/C9TC05703J

关键词: PhotocurrentNickel sulfideElectrochemistryMaterials scienceChemical engineeringHydrogen productionOxygen evolutionWater splittingHydrogenCatalysis

摘要: Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Herein, we report nickel sulfide nanocrystals (NCs) excellent catalysts electrochemical and solar-driven photoelectrochemical (PEC) evolution. Two polymorphic NiS NiS1.97 NCs were synthesized with a controlled composition, showed higher electrocatalytic activity than toward hydrogen/oxygen evolution reactions in 0.5 M H2SO4 1 KOH. Photocathodes fabricated by growing directly onto Si nanowire (NW) arrays. The deposition of results PEC performance both acid alkaline electroytes; photocurrent is 10 mA cm−2 (at 0 V vs. RHE) onset potential 0.2 V. In contrast, Si-NiS1.97 photocathode exhibits much lower less stability. Detailed structure analysis using X-ray photoelectron spectroscopy reveals that more metallic retains same electronic structures during catalytic reaction. high should be main cause this enhanced performance, efficient water-splitting Si-based cells.

参考文章(56)
R. L. Kautz, M. S. Dresselhaus, D. Adler, A. Linz, Electrical and Optical Properties of NiS2 Physical Review B. ,vol. 6, pp. 2078- 2082 ,(1972) , 10.1103/PHYSREVB.6.2078
R. Boughalmi, R. Rahmani, A. Boukhachem, B. Amrani, K. Driss-Khodja, M. Amlouk, Metallic behavior of NiS thin film under the structural, optical, electrical and ab initio investigation frameworks Materials Chemistry and Physics. ,vol. 163, pp. 99- 106 ,(2015) , 10.1016/J.MATCHEMPHYS.2015.07.019
Xia Long, Guixia Li, Zilong Wang, HouYu Zhu, Teng Zhang, Shuang Xiao, Wenyue Guo, Shihe Yang, Metallic Iron–Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media Journal of the American Chemical Society. ,vol. 137, pp. 11900- 11903 ,(2015) , 10.1021/JACS.5B07728
Nan Jiang, Qing Tang, Meili Sheng, Bo You, De-en Jiang, Yujie Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles Catalysis Science & Technology. ,vol. 6, pp. 1077- 1084 ,(2016) , 10.1039/C5CY01111F
Cuncai Lv, Zhibo Chen, Zhongzhong Chen, Bin Zhang, Yong Qin, Zhipeng Huang, Chi Zhang, Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production Journal of Materials Chemistry. ,vol. 3, pp. 17669- 17675 ,(2015) , 10.1039/C5TA03438H
Nathan S. Lewis, A Quantitative Investigation of the Open‐Circuit Photovoltage at the Semiconductor/Liquid Interface Journal of The Electrochemical Society. ,vol. 131, pp. 2496- 2503 ,(1984) , 10.1149/1.2115347
Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi Mi, Elizabeth A. Santori, Nathan S. Lewis, Solar Water Splitting Cells Chemical Reviews. ,vol. 110, pp. 6446- 6473 ,(2010) , 10.1021/CR1002326
Raymond N. Dominey, Nathan S. Lewis, James A. Bruce, Dana C. Bookbinder, Mark S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes Journal of the American Chemical Society. ,vol. 104, pp. 467- 482 ,(1982) , 10.1021/JA00366A016
S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, D. G. Nocera, Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts Science. ,vol. 334, pp. 645- 648 ,(2011) , 10.1126/SCIENCE.1209816
M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, H. Dai, High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation Science. ,vol. 342, pp. 836- 840 ,(2013) , 10.1126/SCIENCE.1241327