Mixed Bregman clustering with approximation guarantees

作者: Richard Nock , Panu Luosto , Jyrki Kivinen

DOI: 10.1007/978-3-540-87481-2_11

关键词: Exponential familyMathematicsSimple (abstract algebra)SymmetrizationDistortionMathematical optimizationAlgorithmCluster analysisInitializationEuclidean geometryBregman divergence

摘要: Two recent breakthroughs have dramatically improved the scope and performance of k-means clustering: squared Euclidean seeding for initialization step, Bregman clustering iterative step. In this paper, we first unite two frameworks by generalizing former improvement to seeding-- a biased randomized technique using divergences -- while its important theoretical approximation guarantees as well. We end up with complete hard algorithm integrating distortion at hand in both steps. Our second contribution is further generalize handle mixed distortions, which smooth out asymetricity divergences. contrast some other symmetrization approaches, our approach keeps simple allows us from regular clustering. Preliminary experiments show that proposed suitable divergence can help discover underlying structure data.

参考文章(17)
Andrew McGregor, Kamalika Chaudhuri, Finding Metric Structure in Information Theoretic Clustering. conference on learning theory. pp. 391- 402 ,(2008)
Katy S. Azoury, M. K. Warmuth, Relative loss bounds for on-line density estimation with the exponential family of distributions uncertainty in artificial intelligence. ,vol. 43, pp. 31- 40 ,(1999) , 10.1023/A:1010896012157
Elena Deza, Michel-Marie Deza, Dictionary of distances ,(2006)
Claudio Gentile, The Robustness of the p -Norm Algorithms Machine Learning. ,vol. 53, pp. 265- 299 ,(2003) , 10.1023/A:1026319107706
Richard Nock, Frank Nielsen, Fitting the Smallest Enclosing Bregman Ball Machine Learning: ECML 2005. pp. 649- 656 ,(2005) , 10.1007/11564096_65
Rafail Ostrovsky, Yuval Rabani, Leonard Schulman, Chaitanya Swamy, The Effectiveness of Lloyd-Type Methods for the k-Means Problem foundations of computer science. pp. 165- 176 ,(2006) , 10.1109/FOCS.2006.75
Jean-Daniel Boissonnat, Richard Nock, Frank Nielsen, On Bregman Voronoi diagrams symposium on discrete algorithms. pp. 746- 755 ,(2007) , 10.5555/1283383.1283463
Frank Nielsen, Jean-Daniel Boissonnat, Richard Nock, Visualizing bregman voronoi diagrams Proceedings of the twenty-third annual symposium on Computational geometry - SCG '07. pp. 121- 122 ,(2007) , 10.1145/1247069.1247089
David Arthur, Sergei Vassilvitskii, k-means++: the advantages of careful seeding symposium on discrete algorithms. pp. 1027- 1035 ,(2007) , 10.5555/1283383.1283494