Compact manifolds of nonpositive curvature

作者: H. Blaine Lawson, Jr. , Shing Tung Yau

DOI: 10.4310/JDG/1214430828

关键词: TopologyMathematicsNon-positive curvatureScalar curvatureMathematical analysisSectional curvatureCurvature

摘要: … We shall always denote byM a compact riemannian manifold of nonpositive curvature, the metric on M by <( , •), the riemannian connection by F, and the riemannian curvature byRx>γ …

参考文章(8)
Vilnis Ozols, Critical points of the displacement function of an isometry Journal of Differential Geometry. ,vol. 3, pp. 411- 432 ,(1969) , 10.4310/JDG/1214429062
Richard L. Bishop, Richard J. Crittenden, Geometry of Manifolds ,(1964)
Joseph A. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature Illinois Journal of Mathematics. ,vol. 8, pp. 14- 18 ,(1964) , 10.1215/IJM/1256067453
R. L. Bishop, B. O’Neill, Manifolds of negative curvature Transactions of the American Mathematical Society. ,vol. 145, pp. 1- 49 ,(1969) , 10.1090/S0002-9947-1969-0251664-4
Jeff Cheeger, Detlef Gromoll, On the Structure of Complete Manifolds of Nonnegative Curvature The Annals of Mathematics. ,vol. 96, pp. 413- 443 ,(1972) , 10.2307/1970819
Shing Tung Yau, On the Fundamental Group of Compact Manifolds of Non-Positive Curvature The Annals of Mathematics. ,vol. 93, pp. 579- ,(1971) , 10.2307/1970888
Robert Hermann, Focal points of closed submanifolds of riemannian spaces Indagationes Mathematicae (Proceedings). ,vol. 66, pp. 613- 628 ,(1963) , 10.1016/S1385-7258(63)50061-4