Efficient sum-of-exponentials approximations for the heat kernel and their applications

作者: Shidong Jiang , Leslie Greengard , Shaobo Wang

DOI: 10.1007/S10444-014-9372-1

关键词: MathematicsDimension (graph theory)DiscretizationExponential sumOrder (ring theory)Boundary value problemHeat equationCombinatoricsHeat kernelIntegral equation

摘要: In this paper, we show that efficient separated sum-of-exponentials approximations can be constructed for the heat kernel in any dimension. one space dimension, admits an approximation involving a number of terms is order O(log(T?)(log(1??)+loglog(T?)))$O(\log (\frac {T}{\delta }) (\log {1}{\epsilon })+\log \log })))$ x??$x\in \mathbb R$ and ?≤t≤T, where ?? desired precision. all higher dimensions, corresponding only O(log2(T?))$O(\log ^{2}(\frac }))$ fixed accuracy ??. These used to accelerate integral equation-based methods boundary value problems governed by equation complex geometry. The resulting algorithms are nearly optimal. For NS points spatial discretization NT time steps, cost O(NSNTlog2T?)$O(N_{S} N_{T} ^{2} \frac })$ both memory CPU parallelized straightforward manner. Several numerical examples presented illustrate stability these approximations.

参考文章(49)
Dietrich Braess, Wolfgang Hackbusch, On the efficient computation of high-dimensional integrals and the approximation by exponential sums Springer, Berlin, Heidelberg. pp. 39- 74 ,(2009) , 10.1007/978-3-642-03413-8_3
Martin Costabel, Francisco-Javier Sayas, Time‐Dependent Problems with the Boundary Integral Equation Method Encyclopedia of Computational Mechanics. pp. 1- 24 ,(2004) , 10.1002/9781119176817.ECM2022
Witold Pogorzelski, Integral equations and their applications Published in <b>1966</b> in Oxford by Pergamon press. ,(1966)
W. Hackbusch, S. Börm, Data-sparse approximation by adaptive H 2 -matrices Computing. ,vol. 69, pp. 1- 35 ,(2002) , 10.1007/S00607-002-1450-4
M.T. Ibáñez, H. Power, An efficient direct BEM numerical scheme for phase change problems using Fourier series Computer Methods in Applied Mechanics and Engineering. ,vol. 191, pp. 2371- 2402 ,(2002) , 10.1016/S0045-7825(01)00416-9
K. Brattkus, D. I. Meiron, Numerical Simulations of Unsteady Crystal Growth SIAM Journal on Applied Mathematics. ,vol. 52, pp. 1303- 1320 ,(1992) , 10.1137/0152075
Jing-Rebecca Li, Leslie Greengard, High Order Accurate Methods for the Evaluation of Layer Heat Potentials SIAM Journal on Scientific Computing. ,vol. 31, pp. 3847- 3860 ,(2009) , 10.1137/080732389
Frank Stenger, Approximations via Whittaker's cardinal function Journal of Approximation Theory. ,vol. 17, pp. 222- 240 ,(1976) , 10.1016/0021-9045(76)90086-1
Kenneth L. Ho, Leslie Greengard, A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization SIAM Journal on Scientific Computing. ,vol. 34, pp. A2507- A2532 ,(2012) , 10.1137/120866683