From atomistic interfaces to dendritic patterns.

作者: P. K. Galenko , D. V. Alexandrov

DOI: 10.1098/RSTA.2017.0210

关键词: Interface (computing)Nano-Eutectic systemMaterials scienceDendrite (crystal)Phase (matter)Statistical physicsAtomic unitsCoalescence (physics)Pattern formation

摘要: Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using data interfaces obtained on atomic scale, one can analyse a single dendrite growth ensemble. This is result recent progress in theoretical methods computational algorithms calculated using powerful computer clusters. Great benefits be attained from development micro-, meso- macro-levels analysis when investigating dynamics interpreting experimental designing macrostructure samples. The review research articles this theme issue cover spectrum scales (from nano- to macro-length scales) order exhibit recently developing trends modelling pattern formation. Atomistic modelling, flow effect interface dynamics, transition diffusion-limited thermally controlled existing at considerable driving force, two-phase (mushy) layer formation, eutectic dendrites, secondary network due coalescence, methods, including boundary integral phase-field tests for models-all these themes are highlighted present issue.This article part 'From atomistic patterns'.

参考文章(58)
Bernd Bruchmann, Dendritic Polymers Based on Urethane Chemistry – Syntheses and Applications Macromolecular Materials and Engineering. ,vol. 292, pp. 981- 992 ,(2007) , 10.1002/MAME.200700119
D.V. Alexandrov, I.G. Nizovtseva, To the theory of underwater ice evolution, or nonlinear dynamics of “false bottoms” International Journal of Heat and Mass Transfer. ,vol. 51, pp. 5204- 5208 ,(2008) , 10.1016/J.IJHEATMASSTRANSFER.2007.11.061
Q. Bronchart, Y. Le Bouar, A. Finel, New coarse-grained derivation of a phase field model for precipitation. Physical Review Letters. ,vol. 100, pp. 015702- ,(2008) , 10.1103/PHYSREVLETT.100.015702
D.V. Alexandrov, A.P. Malygin, Coupled convective and morphological instability of the inner core boundary of the Earth Physics of the Earth and Planetary Interiors. ,vol. 189, pp. 134- 141 ,(2011) , 10.1016/J.PEPI.2011.08.004
N. Provatas, J. A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld, K. R. Elder, Using the phase-field crystal method in the multi-scale modeling of microstructure evolution JOM. ,vol. 59, pp. 83- 90 ,(2007) , 10.1007/S11837-007-0095-3
Jeffrey J Hoyt, Mark Asta, Alain Karma, Atomistic and continuum modeling of dendritic solidification Materials Science & Engineering R-reports. ,vol. 41, pp. 121- 163 ,(2003) , 10.1016/S0927-796X(03)00036-6
W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, Phase-Field Simulation of Solidification Annual Review of Materials Research. ,vol. 32, pp. 163- 194 ,(2002) , 10.1146/ANNUREV.MATSCI.32.101901.155803
Wei Liu, Tao Yang, Jianmei Liu, Ping Che, Yongsheng Han, Controllable Synthesis of Silver Dendrites via an Interplay of Chemical Diffusion and Reaction Industrial & Engineering Chemistry Research. ,vol. 55, pp. 8319- 8326 ,(2016) , 10.1021/ACS.IECR.6B01227
Nikolas Provatas, Ken Elder, Phase-Field Methods in Materials Science and Engineering: PROVATAS:PHASE-FIELD O-BK Wiley-VCH Verlag GmbH & Co. KGaA. ,(2010) , 10.1002/9783527631520