作者: G. Maier , G. Novati , S. Sirtori
DOI: 10.1007/978-3-642-49373-7_18
关键词: Mathematical analysis 、 Holonomic 、 Boundary knot method 、 Variable (mathematics) 、 Classification of discontinuities 、 Convergence (routing) 、 Mathematics 、 Symmetrization 、 Boundary element method 、 Discretization
摘要: Boundary integral equations are formulated by associating in a Betti equation the real elastic state and fictitious generated distributions of static kinematic discontinuities inelastic strains. A suitable discretization is adopted for all variable fields plastic constitutive laws enforced an average sense. Thus symmetric formulation direct BEM obtained. For finite-step problem backward-difference (stepwise holonomic) sense solved iterative procedure extremum convergence theorem given. An implementation some aspects computational experience achieved briefly summarized.