On Symmetrization in Boundary Element Elastic and Elastic-Plastic Analysis

作者: G. Maier , G. Novati , S. Sirtori

DOI: 10.1007/978-3-642-49373-7_18

关键词: Mathematical analysisHolonomicBoundary knot methodVariable (mathematics)Classification of discontinuitiesConvergence (routing)MathematicsSymmetrizationBoundary element methodDiscretization

摘要: Boundary integral equations are formulated by associating in a Betti equation the real elastic state and fictitious generated distributions of static kinematic discontinuities inelastic strains. A suitable discretization is adopted for all variable fields plastic constitutive laws enforced an average sense. Thus symmetric formulation direct BEM obtained. For finite-step problem backward-difference (stepwise holonomic) sense solved iterative procedure extremum convergence theorem given. An implementation some aspects computational experience achieved briefly summarized.

参考文章(11)
G. Maier, G. Novati, S. Sirtori, Symmetric Formulation of an Indirect Boundary Element Method for Elastic-plastic Analysis and Relevant Extremum Properties Boundary Element Methods in Applied Mechanics#R##N#Proceedings of the First Joint Japan/US Symposium on Boundary Element Methods, University of Tokyo, Tokyo, Japan, 3–6 October 1988. pp. 215- 224 ,(1988) , 10.1016/B978-0-08-036958-7.50026-2
Ian Naismith Sneddon, Rodney Hill, Progress in solid mechanics North-Holland Publishing Co.. ,(1963)
G. Maier, On elastoplastic analysis by boundary elements Mechanics Research Communications. ,vol. 10, pp. 45- 52 ,(1983) , 10.1016/0093-6413(83)90021-6
G. Maier, C. Polizzotto, A Galerkin approach to boundary element elastoplastic analysis Applied Mechanics and Engineering. ,vol. 60, pp. 175- 194 ,(1987) , 10.1016/0045-7825(87)90108-3
J. B., D. A. H. Jacobs, The State of the Art in Numerical Analysis. Mathematics of Computation. ,vol. 32, pp. 1325- ,(1978) , 10.2307/2006365
G. Maier, G. Novati, Elastic-plastic boundary element analysis as a linear complementarity problem Applied Mathematical Modelling. ,vol. 7, pp. 74- 82 ,(1983) , 10.1016/0307-904X(83)90116-6
Castrenze Polizzotto, An energy approach to the boundary element method. Part 1 1: elastic-plastic solids Applied Mechanics and Engineering. ,vol. 69, pp. 263- 276 ,(1988) , 10.1016/0045-7825(88)90043-6
O. C. Zienkiewicz, S. Valliappan, I. P. King, Elasto‐plastic solutions of engineering problems ‘initial stress’, finite element approach International Journal for Numerical Methods in Engineering. ,vol. 1, pp. 75- 100 ,(1969) , 10.1002/NME.1620010107