作者: Maria Magnusson , Reiner Lenz , Per-Erik Danielsson
DOI: 10.1016/0895-6111(91)90083-8
关键词: Orientation (computer vision) 、 Mathematics 、 Derivative 、 Normal 、 Computer vision 、 Surface display 、 Computer aid 、 Artificial intelligence 、 Surface (mathematics) 、 Radiological and Ultrasound Technology 、 Health informatics 、 Radiology Nuclear Medicine and imaging 、 Computer Vision and Pattern Recognition 、 Computer Graphics and Computer-Aided Design
摘要: Abstract There are several ways to compute a shaded surface display of radiological 3D density volumes. In this paper we evaluate 12 methods which different combinations principles for detection the be displayed (gray-value threshold, gradient zero-crossing 2nd derivative), localizing in space (grid-point accuracy, subvoxel accuracy) and finally estimating direction normal (from 213 depth image, from 3D-volume). The best quality is obtained by detection, localization, 3D-gradient orientation.