An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem

作者: Lucas Létocart , Marie-Christine Plateau , Gérard Plateau

DOI: 10.1590/S0101-74382014000100005

关键词: Reduction (complexity)Quadratic functionKnapsack problemConstraint (information theory)Continuous knapsack problemHeuristic (computer science)CardinalityMathematicsMathematical optimizationSemidefinite programming

摘要: The 0-1 exact k-item quadratic knapsack problem (E - kQKP) consists of maximizing a function subject to two linear constraints: the first one is classical capacity constraint; second an equality cardinality constraint on number items in knapsack. Most instances this NP-hard with more than forty variables cannot be solved within hour by commercial software such as CPLEX 12.1. We propose therefore fast and efficient heuristic method which produces both good lower upper bounds value reasonable time. Specifically, it integrates primal semidefinite programming reduction phase surrogate dual heuristic. A large computational experiments over randomly generated up 200 validates relevance produced our hybrid heuristic, yields known optima (and prove optimality) 90% (resp. 76%) 100 seconds average.

参考文章(29)
W. X. Zhu, Penalty Parameter for Linearly Constrained 0–1 Quadratic Programming Journal of Optimization Theory and Applications. ,vol. 116, pp. 229- 239 ,(2003) , 10.1023/A:1022174505886
Paul Chaillou, Pierre Hansen, Yvon Mahieu, Best network flow bounds for the quadratic knapsack problem COMO '86 Lectures given at the third session of the Centro Internazionale Matematico Estivo (C.I.M.E.) on Combinatorial optimization. pp. 225- 235 ,(1989) , 10.1007/BFB0083467
D. Fayard, G. Plateau, An algorithm for the solution of the 0–1 knapsack problem Computing. ,vol. 28, pp. 269- 287 ,(1982) , 10.1007/BF02241754
Alain Faye, Frédéric Roupin, Partial Lagrangian relaxation for general quadratic programming A Quarterly Journal of Operations Research. ,vol. 5, pp. 75- 88 ,(2007) , 10.1007/S10288-006-0011-7
Philippe Michelon, Nelson Maculan, Lagrangian decomposition for integer nonlinear programming with linear constraints Mathematical Programming. ,vol. 52, pp. 303- 313 ,(1991) , 10.1007/BF01582893
Brian Borchers, CSDP, A C library for semidefinite programming Optimization Methods & Software. ,vol. 11, pp. 613- 623 ,(1999) , 10.1080/10556789908805765
P. L. Hammer, P. Hansen, B. Simeone, Roof duality, complementation and persistency in quadratic 0–1 optimization Mathematical Programming. ,vol. 28, pp. 121- 155 ,(1984) , 10.1007/BF02612354
Egon Balas, Eitan Zemel, An Algorithm for Large Zero-One Knapsack Problems Operations Research. ,vol. 28, pp. 1130- 1154 ,(1980) , 10.1287/OPRE.28.5.1130
Marc E. Posner, Monique Guignard, The Collapsing 0---1 Knapsack Problem Mathematical Programming. ,vol. 15, pp. 155- 161 ,(1978) , 10.1007/BF01609014