Harmonic tonal detectors based on the BOGA

作者: Lu Wang , Chunru Wan , Shenghong Li , Guoan Bi

DOI: 10.1016/J.SIGPRO.2014.08.008

关键词: HarmonicDetection theoryGreedy algorithmMathematicsAlgorithmDetectorElectronic engineeringOrthonormal basisFrequency domainSignal-to-noise ratioSignal processing

摘要: Tonals generated by machineries with rotating elements typically have a harmonic structure unknown fundamental frequencies, amplitude, order and phase. Detecting this type of signals is great importance to numerous engineering applications. In the frequency domain, tonals are represented few which appear in blocks, related one or more frequencies. This block-sparsity property content suggests alternative ways recover detect using sparse signal processing techniques. Motivated success block orthonormal greedy algorithm (BOGA), new detection architectures, require no prior information about number proposed for robust tonal low noise ratio (SNR) environments. The distributions test statistics architectures firstly analyzed theoretically comprehensively based on theory statistics. Detection performances also compared experimentally. Significant improvements performance SNR environments shown over conventional detectors that do not consider sparsity tonals. HighlightsDetection elements.Frequency dealt (BOGA).Significant detectors.

参考文章(32)
Richard O. Nielsen, Sonar Signal Processing ,(1991)
J.L. Terry, A. Crampton, C.J. Talbot, Passive sonar harmonic detection using feature extraction and clustering analysis oceans conference. pp. 2760- 2766 ,(2005) , 10.1109/OCEANS.2005.1640192
Sailes K. Sengijpta, Fundamentals of Statistical Signal Processing: Estimation Theory Technometrics. ,vol. 37, pp. 465- 466 ,(1995) , 10.1080/00401706.1995.10484391
J. K. Nielsen, M. G. Christensen, S. H. Jensen, Default Bayesian Estimation of the Fundamental Frequency IEEE Transactions on Audio, Speech, and Language Processing. ,vol. 21, pp. 598- 610 ,(2013) , 10.1109/TASL.2012.2229979
S. I. Adalbjornsson, A. Jakobsson, M. G. Christensen, Estimating multiple pitches using block sparsity international conference on acoustics, speech, and signal processing. pp. 6220- 6224 ,(2013) , 10.1109/ICASSP.2013.6638861
Xiaolei Lv, Chunru Wan, Guoan Bi, Block orthogonal greedy algorithm for stable recovery of block-sparse signal representations Signal Processing. ,vol. 90, pp. 3265- 3277 ,(2010) , 10.1016/J.SIGPRO.2010.05.034
Leslie M. Gray, David S. Greeley, SOURCE LEVEL MODEL FOR PROPELLER BLADE RATE RADIATION FOR THE WORLD'S MERCHANT FLEET Journal of the Acoustical Society of America. ,vol. 67, pp. 516- 522 ,(1978) , 10.1121/1.383916
Zhilin Zhang, Bhaskar D. Rao, Extension of SBL Algorithms for the Recovery of Block Sparse Signals With Intra-Block Correlation IEEE Transactions on Signal Processing. ,vol. 61, pp. 2009- 2015 ,(2013) , 10.1109/TSP.2013.2241055
René Vidal, Yi Ma, A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation and Estimation Journal of Mathematical Imaging and Vision. ,vol. 25, pp. 403- 421 ,(2006) , 10.1007/S10851-006-8286-Z
Lu Wang, Guoan Bi, Chunru Wan, Xiaolei Lv, Improved stability conditions of BOGA for noisy block-sparse signals Signal Processing. ,vol. 91, pp. 2567- 2574 ,(2011) , 10.1016/J.SIGPRO.2011.05.009