Adaptive Intrusion Detection: A Data Mining Approach

作者: Wenke Lee , Salvatore J. Stolfo , Kui W. Mok

DOI: 10.1023/A:1006624031083

关键词: Feature selectionComputer scienceSet (abstract data type)Machine learningData collectionInformation technology auditAssociation rule learningAuditArtificial intelligenceAnomaly-based intrusion detection systemIntrusion detection systemData mining

摘要: … for training and also select a set of predictive system features. … ” training data, and then incrementally update the classifier … is attacked (ie, its weakness is exploited). Here the “normal” …

参考文章(31)
Heikki Mannila, A. Inkeri Verkamo, Hannu Toivonen, Discovering Frequent Episodes in Sequences. knowledge discovery and data mining. pp. 210- 215 ,(1995)
Heikki Mannila, Hannu Toivonen, Discovering generalized episodes using minimal occurrences knowledge discovery and data mining. pp. 146- 151 ,(1996)
Heikki Mannila, Ramasamy Uthurusamy, David Heckerman, Daryl Pregibon, Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining AAAI Press. ,(1997)
Stephen G Kochan, Patrick H Wood, Unix System Security ,(1986)
Salvatore J. Stolfo, Philip K. Chan, Toward parallel and distributed learning by meta-learning AAAIWS'93 Proceedings of the 2nd International Conference on Knowledge Discovery in Databases. pp. 227- 240 ,(1993)
Ramakrishnan Srikant, Rakesh Agrawal, Fast algorithms for mining association rules very large data bases. pp. 580- 592 ,(1998)
R. Heady, G. Luger, A. Maccabe, M. Servilla, The architecture of a network level intrusion detection system Other Information: PBD: 15 Aug 1990. ,(1990) , 10.2172/425295
Ramakrishnan Srikant, Rakesh Agrawal, Fast Algorithms for Mining Association Rules in Large Databases very large data bases. pp. 487- 499 ,(1994)
Tom Fawcett, Foster Provost, Adaptive Fraud Detection Data Mining and Knowledge Discovery. ,vol. 1, pp. 291- 316 ,(1997) , 10.1023/A:1009700419189