Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.

作者: Satu I. Inkinen , Jukka Liukkonen , Markus K. H. Malo , Tuomas Virén , Jukka S. Jurvelin

DOI: 10.1121/1.4953021

关键词: Self-healing hydrogelsCartilageMaterials scienceTissue engineeringChondrocyteUltrasoundSpeed of soundAgaroseScaffoldBiomedical engineering

摘要: Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation articular cartilage. However, contribution collagen and chondrocytes on speed sound in cartilage not fully understood experimentally difficult to study. Agarose hydrogels have been used tissue engineering applications Therefore, the aim this study was simulate propagation high frequency (40 MHz) agarose scaffolds with varying concentrations (1 32 × 10(6) cells/ml) (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter were evaluated from simulated pulse-echo through transmission measurements, respectively. Ultrasound backscatter increased increasing chondrocyte concentrations. Furthermore, concentration. observed The present suggests that FDTD may some applicability simulations scattering constructs containing chondrocytes. Findings indicate significant role as scatterers can aid development modeling approaches understanding how architecture affects ultrasound.

参考文章(42)
I H Emery, G Meachim, Surface morphology and topography of patello-femoral cartilage fibrillation in Liverpool necropsies. Journal of Anatomy. ,vol. 116, pp. 103- 120 ,(1973)
Emmanuel Chérin, Amena Säıed, Pascal Laugier, Patrick Netter, Geneviève Berger, Evaluation of acoustical parameter sensitivity to age-related and osteoarthritic changes in articular cartilage using 50-MHz ultrasound. Ultrasound in Medicine and Biology. ,vol. 24, pp. 341- 354 ,(1998) , 10.1016/S0301-5629(97)00289-5
Farshid Guilak, Anthony Ratcliffe, Nancy Lane, Melvin P Rosenwasser, Van C Mow, None, Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. Journal of Orthopaedic Research. ,vol. 12, pp. 474- 484 ,(1994) , 10.1002/JOR.1100120404
N. Männicke, M. Schöne, M. Oelze, K. Raum, Articular cartilage degeneration classification by means of high-frequency ultrasound. Osteoarthritis and Cartilage. ,vol. 22, pp. 1577- 1582 ,(2014) , 10.1016/J.JOCA.2014.06.019
Jason M. Walker, Ashley M. Myers, Mark D. Schluchter, Victor M. Goldberg, Arnold I. Caplan, Jim A. Berilla, Joseph M. Mansour, Jean F. Welter, Nondestructive Evaluation of Hydrogel Mechanical Properties Using Ultrasound Annals of Biomedical Engineering. ,vol. 39, pp. 2521- 2530 ,(2011) , 10.1007/S10439-011-0351-0
Nils Männicke, Martin Schöne, Matthias Gottwald, Felix Göbel, Michael L. Oelze, Kay Raum, 3-D High-Frequency Ultrasound Backscatter Analysis of Human Articular Cartilage Ultrasound in Medicine and Biology. ,vol. 40, pp. 244- 257 ,(2014) , 10.1016/J.ULTRASMEDBIO.2013.08.015
Joseph M. Lane, Charles Weiss, Review of articular cartilage collagen research. Arthritis & Rheumatism. ,vol. 18, pp. 553- 562 ,(1975) , 10.1002/ART.1780180605
B.W. Matthews, Solvent content of protein crystals. Journal of Molecular Biology. ,vol. 33, pp. 491- 497 ,(1968) , 10.1016/0022-2836(68)90205-2
E.B. Hunziker, T.M. Quinn, H.-J. Häuselmann, Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis and Cartilage. ,vol. 10, pp. 564- 572 ,(2002) , 10.1053/JOCA.2002.0814
Emmanuel Bossy, Maryline Talmant, Pascal Laugier, Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. Journal of the Acoustical Society of America. ,vol. 115, pp. 2314- 2324 ,(2004) , 10.1121/1.1689960