Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity.

作者: David G. Winkler , Richard E. Cutler , Jonelle K. Drugan , Sharon Campbell , Deborah K. Morrison

DOI: 10.1074/JBC.273.34.21578

关键词: Transformation (genetics)MutationSuppressorXenopusBiologyMutantMissense mutationCysteineGerminal vesicleMolecular biology

摘要: We have identified mutations in Raf-1 that increase binding to Ras. The were making use of three mutant forms Ras reduced (Winkler, D. G., Johnson, J. C., Cooper, A., and Vojtek, A. B. (1997) Biol. Chem. 272, 24402–24409). One mutation Raf-1, N64L, suppresses the R41Q but not other mutants, suggesting this structurally complements mutation. Missense substitutions residues 143 144 cysteine-rich domain isolated multiple times. These R143Q, R143W, K144E, general suppressors different mutants had increased interaction with non-mutant Each was slightly activated relative wild-type a transformation assay. In addition, two R143W active when tested for induction germinal vesicle breakdown Xenopus oocytes. Interestingly, all ability N-terminal regulatory region inhibit oocyte induced by C-terminal catalytic Raf-1. propose direct or indirect between N- regions is K144E mutations, thereby increasing access Ras-binding activity.

参考文章(46)
Anne B. Vojtek, Stanley M. Hollenberg, Ras-Raf interaction: two-hybrid analysis. Methods in Enzymology. ,vol. 255, pp. 331- 342 ,(1995) , 10.1016/S0076-6879(95)55036-4
R. Marais, Y. Light, H.F. Paterson, C.J. Marshall, Ras recruits Raf‐1 to the plasma membrane for activation by tyrosine phosphorylation. The EMBO Journal. ,vol. 14, pp. 3136- 3145 ,(1995) , 10.1002/J.1460-2075.1995.TB07316.X
Geoffrey J. Clark, Adrienne D. Cox, Suzanne M. Graham, Channing J. Der, Biological assays for Ras transformation. Methods in Enzymology. ,vol. 255, pp. 395- 412 ,(1995) , 10.1016/S0076-6879(95)55042-9
S. Ghosh, W.Q. Xie, A.F. Quest, G.M. Mabrouk, J.C. Strum, R.M. Bell, The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras Journal of Biological Chemistry. ,vol. 269, pp. 10000- 10007 ,(1994) , 10.1016/S0021-9258(17)36981-8
D.K. Morrison, G. Heidecker, U.R. Rapp, T.D. Copeland, Identification of the major phosphorylation sites of the Raf-1 kinase. Journal of Biological Chemistry. ,vol. 268, pp. 17309- 17316 ,(1993) , 10.1016/S0021-9258(19)85336-X
B Diaz, D Barnard, A Filson, S MacDonald, A King, M Marshall, PHOSPHORYLATION OF RAF-1 SERINE 338-SERINE 339 IS AN ESSENTIAL REGULATORY EVENT FOR RAS-DEPENDENT ACTIVATION AND BIOLOGICAL SIGNALING Molecular and Cellular Biology. ,vol. 17, pp. 4509- 4516 ,(1997) , 10.1128/MCB.17.8.4509
V P Stanton, D W Nichols, A P Laudano, G M Cooper, Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Molecular and Cellular Biology. ,vol. 9, pp. 639- 647 ,(1989) , 10.1128/MCB.9.2.639
E Chuang, D Barnard, L Hettich, X F Zhang, J Avruch, M S Marshall, Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Molecular and Cellular Biology. ,vol. 14, pp. 5318- 5325 ,(1994) , 10.1128/MCB.14.8.5318
Joseph Avruch, Xian-feng Zhang, John M. Kyriakis, Raf meets Ras: completing the framework of a signal transduction pathway Trends in Biochemical Sciences. ,vol. 19, pp. 279- 283 ,(1994) , 10.1016/0968-0004(94)90005-1
Teresa R. Brtva, Jonelle K. Drugan, Sujoy Ghosh, Regina S. Terrell, Sharon Campbell-Burk, Robert M. Bell, Channing J. Der, Two distinct Raf domains mediate interaction with Ras. Journal of Biological Chemistry. ,vol. 270, pp. 9809- 9812 ,(1995) , 10.1074/JBC.270.17.9809