On Generalizing Pawlak Approximation Operators

作者: Y. Y. Yao

DOI: 10.1007/3-540-69115-4_41

关键词: Modal logicClosure (topology)Operator theoryDiscrete mathematicsTopological spaceMathematicsBoolean algebra (structure)Approximation operatorsRough setPure mathematics

摘要: This paper reviews and discusses generalizations of Pawlak rough set approximation operators in mathematical systems, such as topological spaces, closure lattices, posets. The structures generalized spaces the properties are analyzed.

参考文章(17)
T. Y. Lin, Qing Liu, Rough Approximate Operators: Axiomatic Rough Set Theory RSKD '93 Proceedings of the International Workshop on Rough Sets and Knowledge Discovery: Rough Sets, Fuzzy Sets and Knowledge Discovery. pp. 256- 260 ,(1993) , 10.1007/978-1-4471-3238-7_31
Wojciech P. Ziarko, C. J. Van Rijsbergen, "Rough Sets, Fuzzy Sets and Knowledge Discovery" ,(1994)
Y.Y. Yao, Two views of the theory of rough sets in finite universes International Journal of Approximate Reasoning. ,vol. 15, pp. 291- 317 ,(1996) , 10.1016/S0888-613X(96)00071-0
Y.Y. Yao, T.Y. Lin, Generalization of Rough Sets using Modal Logics Intelligent Automation and Soft Computing. ,vol. 2, pp. 103- 119 ,(1996) , 10.1080/10798587.1996.10750660
J. C. C. McKinsey, Alfred Tarski, On Closed Elements in Closure Algebras The Annals of Mathematics. ,vol. 47, pp. 122- ,(1946) , 10.2307/1969038
Y YAO, A comparative study of fuzzy sets and rough sets Information Sciences. ,vol. 109, pp. 227- 242 ,(1998) , 10.1016/S0020-0255(98)10023-3
Susan Haack, Philosophy of logics ,(1978)
A. N. Prior, Tense-logic and the continuity of time Studia Logica. ,vol. 13, pp. 133- 148 ,(1962) , 10.1007/BF02317267