作者: João Nisan C Guerreiro , Abimael F.D Loula
DOI: 10.1016/0045-7825(94)90120-1
关键词: Finite element method 、 Discontinuous Galerkin method 、 Mathematics 、 Steady state 、 Exponential function 、 Interpolation 、 Numerical analysis 、 Galerkin method 、 Mathematical analysis 、 Transient (oscillation)
摘要: Abstract Stabilized mixed Petrov-Galerkin (Galerkin/least-squares) and unstable Galerkin finite element approximations of transient elasto-creep problems in stress-velocity formulation are analyzed. The asymptotic behaviour both continuum discrete discussed the main results on numerical analysis error estimates presented. Even with same order interpolation for velocity stress fields, Petrov—Galerkin approximation is uniformly convergent tends asymptotically to corresponding steady state solution expected exponential rate while does not happen approximation.