Finite element analysis of transient creep problems

作者: João Nisan C Guerreiro , Abimael F.D Loula

DOI: 10.1016/0045-7825(94)90120-1

关键词: Finite element methodDiscontinuous Galerkin methodMathematicsSteady stateExponential functionInterpolationNumerical analysisGalerkin methodMathematical analysisTransient (oscillation)

摘要: Abstract Stabilized mixed Petrov-Galerkin (Galerkin/least-squares) and unstable Galerkin finite element approximations of transient elasto-creep problems in stress-velocity formulation are analyzed. The asymptotic behaviour both continuum discrete discussed the main results on numerical analysis error estimates presented. Even with same order interpolation for velocity stress fields, Petrov—Galerkin approximation is uniformly convergent tends asymptotically to corresponding steady state solution expected exponential rate while does not happen approximation.

参考文章(29)
Leopoldo P. Franca, Thomas J. R. Hughes, Abimael F. D. Loula, Isidoro Miranda, A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation Numerische Mathematik. ,vol. 53, pp. 123- 141 ,(1988) , 10.1007/BF01395881
Márcio A. Murad, Abimael F.D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem Applied Mechanics and Engineering. ,vol. 95, pp. 359- 382 ,(1992) , 10.1016/0045-7825(92)90193-N
Abimael F.D. Loula, Thomas J.R. Hughes, Leopoldo P. Franca, Isidoro Miranda, Mixed Petrov-Galerkin methods for the Timoshenko beam problem Applied Mechanics and Engineering. ,vol. 63, pp. 133- 154 ,(1987) , 10.1016/0045-7825(87)90168-X
J. T. Oden, N. Kikuchi, Finite element methods for constrained problems in elasticity International Journal for Numerical Methods in Engineering. ,vol. 18, pp. 701- 725 ,(1982) , 10.1002/NME.1620180507
Michel Fortin, Old and new finite elements for incompressible flows International Journal for Numerical Methods in Fluids. ,vol. 1, pp. 347- 364 ,(1981) , 10.1002/FLD.1650010406
C. W. Heaps, L. Mansfield, An improved solution procedure for creep problems International Journal for Numerical Methods in Engineering. ,vol. 23, pp. 525- 532 ,(1986) , 10.1002/NME.1620230402
Joao Nisan C. Guerreiro, Abimael F. D. Loula, James T. Boyle, Finite Element Methods in Stress Analysis for Creep Creep in Structures. pp. 485- 502 ,(1991) , 10.1007/978-3-642-84455-3_56
Claes Johnson, Vidar Thomee, Error estimates for some mixed finite element methods for parabolic type problems ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique. ,vol. 15, pp. 41- 78 ,(1981) , 10.1051/M2AN/1981150100411