Magnetic phase evolution in the spinel compounds Zn1−xCoxCr2O4

作者: Jennifer E Drewes , Ram Seshadri , Arthur P Ramirez , Brent C Melot , E M Stoudenmire

DOI: 10.1088/0953-8984/21/21/216007

关键词: Condensed matter physicsFerrimagnetismMagnetic susceptibilityMaterials scienceAntiferromagnetismUnpaired electronSolid solutionPolarSpinelMagnetism

摘要: We present the magnetic properties of complete solid solutions ZnCr2O4 and CoCr2O4: two well studied oxide spinels with very different ground states. ZnCr2O4, non-magnetic d10 cations occupying A site d3 on B site, is a highly frustrated antiferromagnet. CoCr2O4, d7 (three unpaired electrons) as well, exhibits Neel ferrimagnetism commensurate incommensurate non-collinear order. More recently, CoCr2O4 has been extensively because its polar behavior which arises from conical ordering. Gradually introducing magnetism results in transition antiferromagnetism to glassy at low concentrations Co, eventually ferrimagnetic states higher concentrations. Real-space Monte Carlo simulations susceptibility suggest that first ordering features across x are captured by near-neighbor self-couplings cross-couplings between atoms. present, part this study, method for displaying temperature dependence manner helps distinguish compounds possessing purely antiferromagnetic interactions where other kinds present.

参考文章(37)
A Fabricio Albuquerque, Fabien Alet, Philippe Corboz, Prakash Dayal, Adrian Feiguin, Sebastian Fuchs, L Gamper, Emanuel Gull, S Gürtler, Andreas Honecker, Ryo Igarashi, Mathias Körner, A Kozhevnikov, Andreas Läuchli, Salvatore R Manmana, M Matsumoto, Ian P McCulloch, F Michel, RM Noack, G Pawłowski, Lode Pollet, Thomas Pruschke, Ulrich Schollwöck, Synge Todo, S Trebst, Matthias Troyer, P Werner, Stefan Wessel, ALPS collaboration, None, The ALPS project release 1.3: Open-source software for strongly correlated systems Journal of Magnetism and Magnetic Materials. ,vol. 310, pp. 1187- 1193 ,(2007) , 10.1016/J.JMMM.2006.10.304
H. Martinho, N. O. Moreno, J. A. Sanjurjo, C. Rettori, A. J. García-Adeva, D. L. Huber, S. B. Oseroff, W. Ratcliff, S.-W. Cheong, P. G. Pagliuso, J. L. Sarrao, G. B. Martins, Magnetic properties of the frustrated antiferromagnetic spinel ZnCr 2 O 4 and the spin-glass Zn 1-x Cd x Cr 2 O 4 (x=0.05,0.10) Physical Review B. ,vol. 64, pp. 024408- ,(2001) , 10.1103/PHYSREVB.64.024408
R. Tackett, G. Lawes, B. C. Melot, M. Grossman, E. S. Toberer, R. Seshadri, Magnetodielectric coupling in Mn 3 O 4 Physical Review B. ,vol. 76, pp. 024409- ,(2007) , 10.1103/PHYSREVB.76.024409
L Ortega-San-Martín, A J Williams, C D Gordon, S Klemme, J P Attfield, Low temperature neutron diffraction study of MgCr2O4 spinel Journal of Physics: Condensed Matter. ,vol. 20, pp. 104238- ,(2008) , 10.1088/0953-8984/20/10/104238
Hosho Katsura, Naoto Nagaosa, Alexander V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets. Physical Review Letters. ,vol. 95, pp. 057205- 057205 ,(2005) , 10.1103/PHYSREVLETT.95.057205
P. Cossee, A.E. Van Arkel, Magnetic properties of Co2+ ions in tetrahedral interstices of an oxide lattice Journal of Physics and Chemistry of Solids. ,vol. 15, pp. 1- 6 ,(1960) , 10.1016/0022-3697(60)90092-5
Akihiko Nakatsuka, Yuya Ikeda, Noriaki Nakayama, Tadato Mizota, Inversion parameter of the CoGa2O4 spinel determined from single-crystal X-ray data Acta Crystallographica Section E-structure Reports Online. ,vol. 62, ,(2006) , 10.1107/S1600536806011044
N. F. Mott, The minimum metallic conductivity in three dimensions Philosophical Magazine Part B. ,vol. 44, pp. 265- 284 ,(1981) , 10.1080/01418638108222560
K.W. Blazey, Ferromagnetic exchange coupling in the spinel lattice Solid State Communications. ,vol. 4, pp. 541- 544 ,(1966) , 10.1016/0038-1098(66)90421-2
S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff, S-W. Cheong, Local spin resonance and spin-peierls-like phase transition in a geometrically frustrated antiferromagnet Physical Review Letters. ,vol. 84, pp. 3718- 3721 ,(2000) , 10.1103/PHYSREVLETT.84.3718