P-Recursive Integer Sequences and Automata Theory

作者: Scott Michael Garrabrant

DOI:

关键词: Integer sequenceMathematicsDeterministic finite automatonRecurrence relationTuring machineAutomata theoryHolonomicDiscrete mathematicsConjectureDiagonalCombinatorics

摘要: Author(s): Garrabrant, Scott Michael | Advisor(s): Pak, Igor Abstract: An integer sequence {a n } is called polynomially recursive, or P-recursive, if it satisfies a nontrivial linear recurrence relation of the formq_0(n)a_n + q_1(n)a_{n−1} . q_k(n)a_{n−k} = 0 ,for some q_i(x) ∈ Z[x], ≤ i k. The study P-recursive sequences plays major role in modern Enumerative and Asymptotic Combinatorics. have D-finite (also holonomic) generating functions.This dissertation on application automata theory to analysis sequences, broken into three self-contained chapters. Chapters 1 2 contain negative results, simulating Turing machines within combinatorial structures show these are not counted by sequence. In Chapter 1, we answer question Maxim Kontsevich showing [1]u_n always when u Z[GL(k, Z)]. 2, disprove celebrated Noonan-Zeilberger conjecture that pattern avoidance P-recursive. These two chapters give first results P-recursiveness using theory. Historically, this form been mostly proven asymptotics.Chapter 3 gives full class counting irrational tilings constant height strip. This subset prove equivalence definitions class: functions tilings, binomial multisums, diagonals N-rational functions. analysis, count paths through labelled graph way equivalent strings accepted given deterministic finite automaton where each letter appears times.

参考文章(82)
Christol Gilles, Globally bounded solutions of differential equations Lecture Notes in Mathematics. pp. 45- 64 ,(1990) , 10.1007/BFB0097124
Albert Raugi, Pierre Crépel, Théorème central limite sur les groupes nilpotents Annales De L Institut Henri Poincare-probabilites Et Statistiques. ,vol. 14, pp. 145- 164 ,(1978)
N. Th. Varopoulos, Groups of Superpolynomial Growth ICM-90 Satellite Conference Proceedings. pp. 194- 200 ,(1991) , 10.1007/978-4-431-68168-7_18
A. M. Odlyzko, Asymptotic enumeration methods Handbook of combinatorics (vol. 2). pp. 1063- 1229 ,(1996)
Jean Berstel, Christophe Reutenauer, Noncommutative Rational Series with Applications Cambridge University Press. ,vol. 137, ,(2010) , 10.1017/CBO9780511760860
Cristopher Moore, Stephan Mertens, The Nature of Computation Oxford University Press. ,(2011) , 10.1093/ACPROF:OSO/9780199233212.001.0001
Robin Pemantle, Mark C. Wilson, Analytic Combinatorics in Several Variables ,(2013)
Fabian Haiden, Ludmil Katzarkov, Maxim Kontsevich, George Dimitrov, Dynamical systems and categories arXiv: Category Theory. ,(2013)