Uniqueness of non-negative solutions of a class of semi-linear elliptic equations

作者: Hans G. Kaper , Man Kam Kwong

DOI: 10.1007/978-1-4613-9608-6_1

关键词: Class (set theory)Pure mathematicsType (model theory)MathematicsUniquenessDifferential equationBoundary value problemMathematical analysisSpecial case

摘要: This article is concerned with boundary value problems of the type (BVP) u″ + g(r)u′ f(u) = 0, r > 0; u′(0) limr → ∞ u(r) where f(0) 0. Such arise in study semi-linear elliptic differential equations ℝn. It shown that has at most one non-negative non-trivial solution under appropriate conditions on f and g. The are weaker than those given by Peletier Serrin [6], who considered special case g(r) (n - 1)/r, n 2, 3,⋯.

参考文章(7)
Bruno Franchi, Ermanno Lanconelli, James Serrin, Existence and Uniqueness of Ground State Solutions of Quasilinear Elliptic Equations Springer, New York, NY. pp. 293- 300 ,(1988) , 10.1007/978-1-4613-9605-5_18
B. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related properties via the maximum principle Communications in Mathematical Physics. ,vol. 68, pp. 209- 243 ,(1979) , 10.1007/BF01221125
K. McLeod, J. Serrin, Uniqueness of solutions of semilinear Poisson equations Proceedings of the National Academy of Sciences of the United States of America. ,vol. 78, pp. 6592- 6595 ,(1981) , 10.1073/PNAS.78.11.6592
L.A. Peletier, James Serrin, Uniqueness of non-negative solutions of semilinear equations in Rn Journal of Differential Equations. ,vol. 61, pp. 380- 397 ,(1986) , 10.1016/0022-0396(86)90112-9
L. A. Peletier, J. Serrin, Uniqueness of positive solutions of semilinear equations in ℝn Archive for Rational Mechanics and Analysis. ,vol. 81, pp. 181- 197 ,(1983) , 10.1007/BF00250651