Cubic spline techniques for fitting X-ray cross sections

作者: A.M. Yacout , R.P. Gardner , K. Verghese

DOI: 10.1016/0167-5087(84)90311-9

关键词: Thin plate splineMonotone cubic interpolationPhysicsMathematical analysisHermite splineOpticsCubic functionCubic Hermite splinePolynomial interpolationSmoothing splineSpline interpolationGeneral Engineering

摘要: Abstract Cubic spline least squares fitting algorithms are developed for continous functions and with jump discontinuities. The cubic coefficients incoherent coherent scattering cross sections elements from sodium through cobalt reported energies 1 to 150 keV, when two interior knots (three regions) used they yield accuracies better than those obtined by a single polynomial. Specialized discontinuous fit X-ray photoelectric allow accurate across the absorption edge discontinuities wide range of very simple function. all in atomic number 11 27 energy keV reported. representation provides computationally faster method using polynomial interpolation discrete data sets requires much less computer storage.

参考文章(16)
Toshio Shiraiwa, Nobukatsu Fujino, Theoretical Calculation of Fluorescent X-Ray Intensities in Fluorescent X-Ray Spectrochemical Analysis. Japanese Journal of Applied Physics. ,vol. 5, pp. 886- 899 ,(1966) , 10.1143/JJAP.5.886
J. Sherman, Simplification of a formula in the correlation of fluorescent X-ray intensities from mixtures* Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. ,vol. 15, pp. 466- 470 ,(1959) , 10.1016/S0371-1951(59)80341-6
Wm.J. Veigele, Photon cross sections from 0.1 keV to 1 MeV for elements Z = 1 to Z = 94* Atomic Data and Nuclear Data Tables. ,vol. 5, pp. 51- 111 ,(1973) , 10.1016/S0092-640X(73)80015-4
Carl W. De Boor, Samuel Daniel Conte, Elementary Numerical Analysis: An Algorithmic Approach ,(1980)
R. P. Gardner, L. Wielopolski, J. M. Doster, Adaptation of the Fundamental Parameters Monte Carlo Simulation to EDXRF Analysis with Secondary Fluorescer X-Ray Machines Advances in x-ray analysis. ,vol. 21, pp. 129- 142 ,(1977) , 10.1154/S0376030800015214
J. W. Criss, Fundamental-Parameters Calculations on a Laboratory Microcomputer Advances in x-ray analysis. ,vol. 23, pp. 93- 97 ,(1979) , 10.1154/S0376030800006182
Robert W. Hornbeck, Numerical Methods ,(1975)
J. L. Walsh, J. H. Ahlberg, E. N. Nilson, The theory of splines and their applications tsta. ,(1967)