On partial cubes and graphs with convex intervals

作者: Boštjan Brešar , Sandi Klavžar

DOI:

关键词: HypercubeMathematicsRegular polygonIsometric embeddingDiscrete mathematicsBipartite graphConvexityPartial cubeGraphCombinatoricsSubdivision

摘要: A graph is called a partial cube if it admits an isometric embedding into hypercube. Subdivisions of wheels are considered with respect to such embeddings and the convexity their intervals. This allows us answer in negative question Chepoi Tardif from 1994 whether all bipartite graphs convex intervals cubes. On positive side we prove that which bipartite, has intervals, not cube, always contains subdivision $K_4$.

参考文章(12)
Wilfried Imrich, Sandi Klavžar, Richard H Hammack, Product Graphs: Structure and Recognition ,(2000)
Henry Martyn Mulder, The interval function of a graph ,(1980)
Elke Wilkeit, Isometric embeddings in Hamming graphs Journal of Combinatorial Theory, Series B. ,vol. 50, pp. 179- 197 ,(1990) , 10.1016/0095-8956(90)90073-9
Wilfried Imrich, Sandi Klavzar, On the complexity of recognizing Hamming graphs and related classes of graphs European Journal of Combinatorics. ,vol. 17, pp. 209- 221 ,(1996) , 10.1006/EUJC.1996.0018
Komei Fukuda, Keiichi Handa, Antipodal graphs and oriented matroids Discrete Mathematics. ,vol. 111, pp. 245- 256 ,(1993) , 10.1016/0012-365X(93)90159-Q
James Lawrence, Lopsided sets and orthant-intersection by convex sets Pacific Journal of Mathematics. ,vol. 104, pp. 155- 173 ,(1983) , 10.2140/PJM.1983.104.155
W. Imrich, S. Klavžar, A Convexity Lemma and Expansion Procedures for Bipartite Graphs The Journal of Combinatorics. ,vol. 19, pp. 677- 685 ,(1998) , 10.1006/EUJC.1998.0229
Michel Mollard, Interval-regularity does not lead to interval monotonicity Discrete Mathematics. ,vol. 118, pp. 233- 237 ,(1993) , 10.1016/0012-365X(93)90064-Z
D.Ž Djoković, Distance-preserving subgraphs of hypercubes Journal of Combinatorial Theory, Series B. ,vol. 14, pp. 263- 267 ,(1973) , 10.1016/0095-8956(73)90010-5
Sandi Klavžar, Ivan Gutman, Wiener number of vertex-weighted graphs and a chemical application Discrete Applied Mathematics. ,vol. 80, pp. 73- 81 ,(1997) , 10.1016/S0166-218X(97)00070-X