Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs

作者: Robert E. Tarjan , Mihalis Yannakakis

DOI: 10.1137/0213035

关键词: Discrete mathematicsCombinatoricsChordal graphGraph theoryLexicographic breadth-first searchRose (topology)MathematicsSymmetric matrixGaussian eliminationAlgorithmHypergraphTime complexity

摘要: … Since exactly JR(i)- R’(i)J new vertices are numbered when R (i) is selected, R (i + 1) contains every vertex in R (i)R’(i), and IR’(i+. We can compute the maximal edges of an acyclic …

参考文章(5)
Oded Shmueli, Nathan Goodman, Syntactic Characterizations of Tree Database Schemas. XP2 Workshop on Relational Database Theory. ,(1981)
Donald J Rose, Triangulated graphs and the elimination process Journal of Mathematical Analysis and Applications. ,vol. 32, pp. 597- 609 ,(1970) , 10.1016/0022-247X(70)90282-9
David Maier, Jeffrey D. Ullman, Connections in acyclic hypergraphs Theoretical Computer Science. ,vol. 32, pp. 185- 199 ,(1984) , 10.1016/0304-3975(84)90030-6
Catriel Beeri, Ronald Fagin, David Maier, Mihalis Yannakakis, On the Desirability of Acyclic Database Schemes Journal of the ACM. ,vol. 30, pp. 479- 513 ,(1983) , 10.1145/2402.322389