Collaborative Filtering Recommender Systems

作者: Dan Frankowski , Jon Herlocker , Shilad Sen , J. Ben Schafer

DOI: 10.1007/978-3-540-72079-9_9

关键词: Recommender systemAssociation rule learningProcess (engineering)PersonalizationComputer scienceWorld Wide WebField (computer science)Recommendation serviceCollaborative filteringOpen research

摘要: One of the potent personalization technologies powering adaptive web is collaborative filtering. Collaborative filtering (CF) process or evaluating items through opinions other people. CF technology brings together large interconnected communities on web, supporting substantial quantities data. In this chapter we introduce core concepts filtering, its primary uses for users theory and practice algorithms, design decisions regarding rating systems acquisition ratings. We also discuss how to evaluate systems, evolution rich interaction interfaces. close with discussions challenges privacy particular a recommendation service important open research questions in field.

参考文章(60)
Peter Brusilovski, Alfred Kobsa, Wolfgang Nejdl, None, The adaptive web: methods and strategies of web personalization Springer-Verlag. ,(2007)
George Karypis, John Riedl, Joseph Konstan, Badrul M. Sarwar, Incremental SVD-Based Algorithms for Highly Scaleable Recommender Systems Journal of Computing and Information Technology. ,(2002)
Alexandrin Popescul, Andrew I. Schein, Lyle H. Ungar, David M. Pennock, Generative Models for Cold-Start Recommendations ,(2001)
Shyong K. “Tony” Lam, Dan Frankowski, John Riedl, Do You Trust Your Recommendations? An Exploration of Security and Privacy Issues in Recommender Systems Lecture Notes in Computer Science. pp. 14- 29 ,(2006) , 10.1007/11766155_2
Mark Claypool, Tim Miranda, Paul Murnikov, Dmitry Netes, Matthew Sartin, Anuja Gokhale, Combining Content-Based and Collaborative Filters in an Online Newspaper international acm sigir conference on research and development in information retrieval. ,(1999)
Mark O’connor, Dan Cosley, Joseph A Konstan, John Riedl, None, PolyLens: A Recommender System for Groups of Users ECSCW 2001. pp. 199- 218 ,(2001) , 10.1007/0-306-48019-0_11
Michael J. Pazzani, Daniel Billsus, Content-Based Recommendation Systems The Adaptive Web. pp. 325- 341 ,(2007) , 10.1007/978-3-540-72079-9_10
Nathaniel Good, John Riedl, Joseph A. Konstan, Al Borchers, J. Ben Schafer, Badrul Sarwar, Jon Herlocker, Combining collaborative filtering with personal agents for better recommendations national conference on artificial intelligence. pp. 439- 446 ,(1999)
Robin Burke, Hybrid Web Recommender Systems The Adaptive Web. pp. 377- 408 ,(2007) , 10.1007/978-3-540-72079-9_12
Alfred Kobsa, Privacy-Enhanced Web Personalization The Adaptive Web. pp. 628- 670 ,(2007) , 10.1007/978-3-540-72079-9_21