Synthesis and physicochemical study of polyester polyols of epoxy resin of 2,4,6‐tris(4‐hydroxyphenyl)‐1,3,5‐triazine and their polyurethanes

作者: Rizwan Y. Ghumara , Jignesh P. Patel , Pooja P. Adroja , Parsotam H. Parsania

DOI: 10.1002/APP.40203

关键词: Materials scienceUltimate tensile strengthDifferential scanning calorimetryEthylene glycolPolyesterRosinPolymer chemistryNuclear chemistryThermogravimetric analysisEpoxyFourier transform infrared spectroscopy

摘要: Polyester polyols of ricinoleic acid (ETPRA), oleic acid, linoleic (ETPLA), and rosin (ETPR) epoxy resin 2,4,6-tris(4-hydroxyphenyl)-1-3-5-triazine (ETP) their polyurethanes (PUs) were synthesized characterized by Fourier transform infrared spectroscopy, NMR, differential scanning calorimetry, thermogravimetric analysis techniques. The PU films showed the following density order: ETPRPU600 > ETPRAPU600 > ETPLAPU600. ETPLAPU600 good tensile strength volume resistivity values compared to ETPRAPU600 ETPRPU600. All three PUs electric strength. almost double incorporation soft-segment poly(ethylene glycol) 600 into chains resulted in flexibility films. a high water absorption tendency water, acidic, saline environments, they degraded an alkaline environment. weight gain was due surface solvolysis also probably microcrack formation. polyester thermally stable up about 167–221 184–214°C, respectively, followed multistep degradation reactions with either fractional or integral order (0.43–2.71) kinetics. Thus, structure affected studied physicochemical properties © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40203.

参考文章(29)
Ana Espert, Francisco Vilaplana, Sigbritt Karlsson, Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties Composites Part A-applied Science and Manufacturing. ,vol. 35, pp. 1267- 1276 ,(2004) , 10.1016/J.COMPOSITESA.2004.04.004
D. Allan, J. Daly, J.J. Liggat, Thermal volatilisation analysis of TDI-based flexible polyurethane foam Polymer Degradation and Stability. ,vol. 98, pp. 535- 541 ,(2013) , 10.1016/J.POLYMDEGRADSTAB.2012.12.002
B. K. Kendagannaswamy, Siddaramaiah, Chain‐extended polyurethanes—Synthesis and characterization Journal of Applied Polymer Science. ,vol. 84, pp. 359- 369 ,(2002) , 10.1002/APP.10347
F. Seniha Güner, Yusuf Yağcı, A. Tuncer Erciyes, Polymers from triglyceride oils Progress in Polymer Science. ,vol. 31, pp. 633- 670 ,(2006) , 10.1016/J.PROGPOLYMSCI.2006.07.001
Zoran S. Petrović, DooPyo Hong, Ivan Javni, Natalia Erina, Fan Zhang, Jan Ilavský, Phase structure in segmented polyurethanes having fatty acid-based soft segments Polymer. ,vol. 54, pp. 372- 380 ,(2013) , 10.1016/J.POLYMER.2012.10.019
Xiaohua Kong, Suresh S. Narine, Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules. ,vol. 8, pp. 2203- 2209 ,(2007) , 10.1021/BM070016I
Ivan Javni, Wei Zhang, Zoran S. Petrović, Effect of different isocyanates on the properties of soy‐based polyurethanes Journal of Applied Polymer Science. ,vol. 88, pp. 2912- 2916 ,(2003) , 10.1002/APP.11966
Yijin Xu, Zoran Petrovic, Sudipto Das, Garth L. Wilkes, Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments Polymer. ,vol. 49, pp. 4248- 4258 ,(2008) , 10.1016/J.POLYMER.2008.07.027
Andreas Heidbreder, Rainer Höfer, Roland Grützmacher, Alfred Westfechtel, C. William Blewett, Oleochemical products as building blocks for polymers Fett-lipid. ,vol. 101, pp. 418- 424 ,(1999) , 10.1002/(SICI)1521-4133(199911)101:11<418::AID-LIPI418>3.0.CO;2-X
Yongshang Lu, Richard C. Larock, New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Biomacromolecules. ,vol. 8, pp. 3108- 3114 ,(2007) , 10.1021/BM700522Z