The crystal structure of the tetrameric DABA-aminotransferase EctB, a rate-limiting enzyme in the ectoine biosynthesis pathway.

作者: Heidi Therese Hillier , Bjørn Altermark , Ingar Leiros

DOI: 10.1111/FEBS.15265

关键词: BiosynthesisStereochemistryProtein Data Bank (RCSB PDB)EctoineActive siteTransferaseCarboxylic acidEnzymeChemistryTetramer

摘要: l-2,4-diaminobutyric acid (DABA) aminotransferases can catalyze the formation of amines at distal ω-position substrates, and is intial and rate-limiting enzyme in biosynthesis pathway cytoprotecting molecule (S)-2-methyl-1,4,5,6-tetrahydro-4-pyrimidine carboxylic (ectoine). Although there an industrial interest ectoine, DABA remain poorly characterized. Herein, we present crystal structure EctB (2.45 A), a aminotransferase from Chromohalobacter salexigens DSM 3043, well-studied organism with respect to osmoadaptation by ectoine biosynthesis. We investigate enzyme's oligomeric state show that C. salexigens tetramer two functional dimers, suggest conserved recognition sites for dimerization also includes characteristic gating loop helps shape active site neighboring monomer. ω-transaminases are known have binding pockets accommodate their dual substrate specificity, herein provide first description may account catalytic character aminotransferases. Furthermore, our biochemical data reveal thermostable, halotolerant broad pH tolerance which be linked its tetrameric state. Put together, this study creates solid foundation deeper structural understanding opening up future downstream studies EctB's redesign as better catalyst In summary, believe serve benchmark characterization DATABASE: Structural available PDB database under accession number 6RL5.

参考文章(76)
Wei Chen, Shan Zhang, Peixia Jiang, Jun Yao, Yongzhi He, Lincai Chen, Xiwu Gui, Zhiyang Dong, Shuang-Yan Tang, Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis Metabolic Engineering. ,vol. 30, pp. 149- 155 ,(2015) , 10.1016/J.YMBEN.2015.05.004
Mary Alice Hefford, Matthew H. Parker, Introduction of potential helix‐capping residues into an engineered helical protein Biotechnology and Applied Biochemistry. ,vol. 28, pp. 69- 76 ,(1998) , 10.1111/J.1470-8744.1998.TB00514.X
Alexander S. Reshetnikov, Valentina N. Khmelenina, Ildar I. Mustakhimov, Yuri A. Trotsenko, Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs Methods in Enzymology. ,vol. 495, pp. 15- 30 ,(2011) , 10.1016/B978-0-12-386905-0.00002-4
Karin Schwibbert, Alberto Marin-Sanguino, Irina Bagyan, Gabriele Heidrich, Georg Lentzen, Harald Seitz, Markus Rampp, Stephan C. Schuster, Hans-Peter Klenk, Friedhelm Pfeiffer, Dieter Oesterhelt, Hans Jörg Kunte, A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T Environmental Microbiology. ,vol. 13, pp. 1973- 1994 ,(2011) , 10.1111/J.1462-2920.2010.02336.X
Milagros Zaballos, Arantxa López-López, Lise Ovreas, Sergio Galán Bartual, Giuseppe D'Auria, Jose Carlos Alba, Boris Legault, Ravindra Pushker, Frida Lise Daae, Francisco Rodríguez-Valera, Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. FEMS Microbiology Ecology. ,vol. 56, pp. 389- 405 ,(2006) , 10.1111/J.1574-6941.2006.00060.X
Robert A. John, Pyridoxal phosphate-dependent enzymes Biochimica et Biophysica Acta. ,vol. 1248, pp. 81- 96 ,(1995) , 10.1016/0167-4838(95)00025-P
M. Shaheer Malik, Eul-Soo Park, Jong-Shik Shin, Features and technical applications of ω-transaminases. Applied Microbiology and Biotechnology. ,vol. 94, pp. 1163- 1171 ,(2012) , 10.1007/S00253-012-4103-3
Jan Bursy, Antonio J. Pierik, Nathalie Pica, Erhard Bremer, Osmotically Induced Synthesis of the Compatible Solute Hydroxyectoine Is Mediated by an Evolutionarily Conserved Ectoine Hydroxylase Journal of Biological Chemistry. ,vol. 282, pp. 31147- 31155 ,(2007) , 10.1074/JBC.M704023200