Effect of La3+, Pr3+, and Sm3+ triple-doping on structural, electrical, and thermal properties of ceria solid electrolytes for intermediate temperature solid oxide fuel cells

作者: Chittimadula Madhuri , Kasarapu Venkataramana , Jada Shanker , C. Vishnuvardhan Reddy

DOI: 10.1016/J.JALLCOM.2020.156636

关键词: CeriumAnalytical chemistryIonic conductivityMaterials scienceRaman spectroscopyActivation energyFast ion conductorDielectric spectroscopyDopantOxideMechanical engineeringMaterials ChemistryMechanics of MaterialsMetals and Alloys

摘要: Abstract In the present study, we have investigated effect of La3+, Pr3+, and Sm3+ triple-doping on structural, electrical, thermal properties ceria (Ce1–x(Lax/3Prx/3Smx/3)O2-δ). X-ray diffraction studies confirm formation samples with single-phase cubic-fluorite structure (JCPDS PDF File No: 34-0394). The lattice parameter values increases increasing dopant concentration (from 5.4190 A to 5.4503 A), shows that dopants get totally dissolved into Cerium site. All prepared were sintered at 1300 °C for 4 h. relative densities found be higher than 95% high value is observed composition LPS8 i.e. 97.8%. calculated crystalline size in range 46 53 nm. Scanning electron microscope energy dispersive spectroscopic techniques reveal surface-microstructure presence elemental confirmation compositions. average grain between 231 366 nm. Raman spectroscopy study reveals existence oxygen vacancies all compositions estimated composition. impedance revealed total ionic conductivity activation energies Ce0.76La0.08Pr0.08Sm0.08O2-δ (LPS8) displays highest 0.043 S/cm low 0.76 eV. Matched expansion coefficient sample already existing electrode materials, makes it as an effective electrolyte material intermediate temperature–solid oxide fuel cell applications.

参考文章(61)
S. Ramesh, K.C. James Raju, Preparation and characterization of Ce1−x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs International Journal of Hydrogen Energy. ,vol. 37, pp. 10311- 10317 ,(2012) , 10.1016/J.IJHYDENE.2012.04.008
Brian C. H. Steele, Angelika Heinzel, Materials for fuel-cell technologies Nature. ,vol. 414, pp. 345- 352 ,(2001) , 10.1038/35104620
H Inaba, Ceria-based solid electrolytes Solid State Ionics. ,vol. 83, pp. 1- 16 ,(1996) , 10.1016/0167-2738(95)00229-4
Jose Manuel López, Alexander L. Gilbank, Tomás García, Benjamín Solsona, Said Agouram, Laura Torrente-Murciano, The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation Applied Catalysis B-environmental. ,vol. 174, pp. 403- 412 ,(2015) , 10.1016/J.APCATB.2015.03.017
Xiaomin LIN, Qiuyue LÜ, Lili ZHU, Xiaomei LIU, Synthesis and characterization of Ce0.8Sm0.2–xPrxO2–δ(x=0.02–0.08) solid electrolyte materials Journal of Rare Earths. ,vol. 33, pp. 411- 416 ,(2015) , 10.1016/S1002-0721(14)60434-8
V KHARTON, F MARQUES, A ATKINSON, Transport properties of solid oxide electrolyte ceramics: a brief review Solid State Ionics. ,vol. 174, pp. 135- 149 ,(2004) , 10.1016/J.SSI.2004.06.015
Jeffrey W. Fergus, Electrolytes for solid oxide fuel cells Journal of Power Sources. ,vol. 162, pp. 30- 40 ,(2006) , 10.1016/J.JPOWSOUR.2006.06.062
V. Prashanth Kumar, Y.S. Reddy, P. Kistaiah, G. Prasad, C. Vishnuvardhan Reddy, Thermal and electrical properties of rare-earth co-doped ceria ceramics Materials Chemistry and Physics. ,vol. 112, pp. 711- 718 ,(2008) , 10.1016/J.MATCHEMPHYS.2008.06.030
J. A. Kilner, Defects and Conductivity in Ceria-based Oxides Chemistry Letters. ,vol. 37, pp. 1012- 1015 ,(2008) , 10.1246/CL.2008.1012
V. Venkatesh, V. Prashanth Kumar, R. Sayanna, C. Vishnuvardhan Reddy, Preparation, Characterization and Thermal Expansion of Pr Co-Dopant in Samarium Doped Ceria Advances in Materials Physics and Chemistry. ,vol. 02, pp. 5- 8 ,(2012) , 10.4236/AMPC.2012.24B002