Lie Algebroids, Holonomy and Characteristic Classes

作者: Rui Loja Fernandes

DOI: 10.1006/AIMA.2001.2070

关键词: Connection (mathematics)AlgebraMathematicsCharacteristic classLie algebroidLie bracket of vector fieldsFoliationOrbit (control theory)Simple Lie groupHolonomy

摘要: Abstract We extend the notion of connection in order to study singular geometric structures, namely, we consider a on Lie algebroid which is natural extension usual concept covariant connection. It allows us define holonomy orbit foliation and prove Stability Theorem. also introduce secondary or exotic characteristic classes, thus providing invariants generalize modular class algebroid.

参考文章(30)
Raoul Bott, Lectures on characteristic classes and foliations Lecture Notes in Mathematics. pp. 1- 94 ,(1972) , 10.1007/BFB0058509
Franz W. Kamber, Philippe Tondeur, Foliated bundles and characteristic classes ,(1975)
Yvette Kosmann-Schwarzbach, MODULAR VECTOR FIELDS AND BATALIN-VILKOVISKY ALGEBRAS Banach Center Publications. ,vol. 51, pp. 109- 129 ,(2000)
Ronald Goldman, The holonomy ring on the leaves of foliated manifolds Journal of Differential Geometry. ,vol. 11, pp. 411- 449 ,(1976) , 10.4310/JDG/1214433598
Jan Kubarski, BOTT'S VANISHING THEOREM FOR REGULAR LIE ALGEBROIDS Transactions of the American Mathematical Society. ,vol. 348, pp. 2151- 2167 ,(1996) , 10.1090/S0002-9947-96-01646-7
Alan Weinstein, Ana Cannas da Silva, Geometric Models for Noncommutative Algebras ,(1999)
Calvin C. Moore, Claude L. Schochet, Global Analysis on Foliated Spaces ,(1987)
Alan Weinstein, The local structure of Poisson manifolds Journal of Differential Geometry. ,vol. 18, pp. 523- 557 ,(1983) , 10.4310/JDG/1214437787