作者: JerryA. Hausman , WilliamE. Taylor
DOI: 10.1016/0304-4076(81)90085-3
关键词: Unobservable 、 Latent variable 、 Econometrics 、 Pooling 、 Estimator 、 Statistics 、 Mathematics 、 Returns to scale 、 Instrumental variable 、 Panel data 、 Earnings
摘要: Abstract An important purpose in pooling time-series and cross-section data is to control for individual-specific unobservable effects which may be correlated with other explanatory variables, e.g. latent ability measuring returns schooling earnings equations or managerial scale firm cost functions. Using instrumental variables the time-invariant characteristics of variable, we derive: 1. (1) a test presence this effect over-identifying restriction use; 2. (2) necessary sufficient conditions identification all parameters model; 3. (3) asymptotically efficient estimator under it differs from within-groups estimator. We calculate estimates wage equation Michigan income dynamics indicate substantial differences Balestra-Nerlove — particularly significantly higher estimate schooling.