Towards dynamic domains: Totally continuous cocomplete Q-categories

作者: Isar Stubbe

DOI: 10.1016/J.TCS.2007.01.002

关键词: Complete latticeMathematicsDynamic logic (digital electronics)QuantaloidAlgebraGeneralizationDiscrete mathematicsMathematical structureQuantale

摘要: It is common practice in both theoretical computer science and physics to describe the (static) logic of a system by means complete lattice. When formalizing dynamics such system, updates that organize themselves quite naturally quantale, or more generally, quantaloid. In fact, we are led consider cocomplete quantaloid-enriched categories as fundamental mathematical structure for dynamic physics. Here explain theory totally continuous generalization well-known suplattices. That say, undertake some first steps towards ''dynamic domains''.

参考文章(23)
Samson Abramsky, T. S. E. Maibaum, Dov M. Gabbay, Handbook of logic in computer science (vol. 3): semantic structures Oxford University Press. ,(1995)
G. M. Kelly, Basic concepts of enriched category theory Cambridge University Press. ,(1982)
Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, Dana S. Scott, A Compendium of continuous lattices Springer Berlin Heidelberg. ,(1980) , 10.1007/978-3-642-67678-9
Jirí Rosicky, Jirí Adámek, Locally presentable and accessible categories ,(1994)
Isar Stubbe, Categorical structures enriched in a quantaloid : Regular presheaves, regular semicategories Cahiers de Topologie et Géométrie Différentielle Catégoriques. ,vol. 46, pp. 99- 121 ,(2005)
Bob Coecke, Isar Stubbe, Operational resolutions and state transitions in a categorical setting Foundations of Physics Letters. ,vol. 12, pp. 29- 49 ,(1999) , 10.1023/A:1021626704772
Samson Abramsky, Steven Vickers, Quantales‚ Observational Logic and Process Semantics Mathematical Structures in Computer Science. ,vol. 3, pp. 161- 227 ,(1993) , 10.1017/S0960129500000189
JIŘÍ ADÁMEK, A categorical generalization of Scott domains Mathematical Structures in Computer Science. ,vol. 7, pp. 419- 443 ,(1997) , 10.1017/S0960129597002351
F. William Lawvere, Metric spaces, generalized logic, and closed categories Rendiconti Del Seminario Matematico E Fisico Di Milano. ,vol. 43, pp. 135- 166 ,(1973) , 10.1007/BF02924844
R. Gordon, A.J. Power, Enrichment through variation Journal of Pure and Applied Algebra. ,vol. 120, pp. 167- 185 ,(1997) , 10.1016/S0022-4049(97)00070-4