Two-component equations modelling water waves with constant vorticity

作者: Joachim Escher , David Henry , Boris Kolev , Tony Lyons

DOI: 10.1007/S10231-014-0461-Z

关键词: Manifold (fluid mechanics)Geodesic flowConstant (mathematics)Euler equationsVorticityMathematical analysisNonlinear systemPhysicsWaves and shallow waterComponent (thermodynamics)

摘要: In this paper, we derive a two-component system of nonlinear equations which models two-dimensional shallow water waves with constant vorticity. Then, we prove well-posedness of this equation using a geometrical framework which allows us to recast this equation as a geodesic flow on an infinite-dimensional manifold. Finally, we provide a criterion for global existence.

参考文章(40)
Hans Triebel, Theory of function spaces ,(1983)
Roberto Camassa, Darryl D. Holm, James M. Hyman, A New Integrable Shallow Water Equation Advances in Applied Mechanics. ,vol. 31, pp. 1- 33 ,(1994) , 10.1016/S0065-2156(08)70254-0
G. Misiolek, Classical solutions of the periodic Camassa—Holm equation Geometric and Functional Analysis. ,vol. 12, pp. 1080- 1104 ,(2002) , 10.1007/PL00012648
R S Johnson, The Camassa-Holm equation for water waves moving over a shear flow Fluid Dynamics Research. ,vol. 33, pp. 97- 111 ,(2003) , 10.1016/S0169-5983(03)00036-4
R. S. JOHNSON, Camassa-Holm, Korteweg-de Vries and related models for water waves Journal of Fluid Mechanics. ,vol. 455, pp. 63- 82 ,(2002) , 10.1017/S0022112001007224
David G. Ebin, Jerrold Marsden, Groups of Diffeomorphisms and the Motion of an Incompressible Fluid The Annals of Mathematics. ,vol. 92, pp. 102- ,(1970) , 10.2307/1970699
Joachim Escher, Non-metric two-component Euler equations on the circle Monatshefte für Mathematik. ,vol. 167, pp. 449- 459 ,(2012) , 10.1007/S00605-011-0323-3
Rossen I. Ivanov, Extended Camassa-Holm Hierarchy and Conserved Quantities Zeitschrift für Naturforschung A. ,vol. 61, pp. 133- 138 ,(2006) , 10.1515/ZNA-2006-3-404