Particle Swarm Optimization based K-Prototype Clustering Algorithm

作者: K. Arun Prabha , N. Karthi , Keyani Visalakshi

DOI:

关键词: Canopy clustering algorithmCluster analysisMeta-optimizationData miningComputer scienceCorrelation clusteringCURE data clustering algorithmParticle swarm optimizationMulti-swarm optimizationMetaheuristic

摘要: Clustering in data mining is a discovery process that groups set of so as to maximize the intra- cluster similarity and minimize inter-cluster similarity. The K-Means algorithm best suited for clustering large numeric sets when at possess only values. K-Modes extends domain categorical. But some applications, objects are described by both categorical features. K-Prototype one most important algorithms this type data. This produces locally optimal solution dependent on initial prototypes order object Particle Swarm Optimization simple optimization techniques, which can be effectively implemented enhance results. discrete or binary mechanisms useful handle mixed set. leads better cost evaluation description space subsequently enhanced processing Optimization. paper proposes new variant reach global problem. proposed evaluated standard benchmark dataset taken from UCI machine learning repository. comparative analysis proved based provides performance than traditional K-modes K- Prototype algorithms.

参考文章(20)
R. Madhuri, M. Ramakrishna Murty, J. V. R. Murthy, P. V. G. D. Prasad Reddy, Suresh C. Satapathy, Cluster Analysis on Different Data Sets Using K-Modes and K-Prototype Algorithms Springer, Cham. pp. 137- 144 ,(2014) , 10.1007/978-3-319-03095-1_15
Omar S. Soliman, Doaa A. Saleh, Samaa Rashwan, A Bio Inspired Fuzzy K-Modes Clustring Algorithm Neural Information Processing. pp. 663- 669 ,(2012) , 10.1007/978-3-642-34487-9_80
Amir Ahmad, Lipika Dey, Algorithm for fuzzy clustering of mixed data with numeric and categorical attributes international conference on distributed computing and internet technology. pp. 561- 572 ,(2005) , 10.1007/11604655_63
Nabila Nouaouria, Mounir Boukadoum, Improved global-best particle swarm optimization algorithm with mixed-attribute data classification capability Applied Soft Computing. ,vol. 21, pp. 554- 567 ,(2014) , 10.1016/J.ASOC.2014.04.018
Jinchao Ji, Wei Pang, Chunguang Zhou, Xiao Han, Zhe Wang, A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data Knowledge Based Systems. ,vol. 30, pp. 129- 135 ,(2012) , 10.1016/J.KNOSYS.2012.01.006
Jinchao Ji, Tian Bai, Chunguang Zhou, Chao Ma, Zhe Wang, An improved k-prototypes clustering algorithm for mixed numeric and categorical data Neurocomputing. ,vol. 120, pp. 590- 596 ,(2013) , 10.1016/J.NEUCOM.2013.04.011
Anil K. Jain, Data clustering: 50 years beyond K-means international conference on pattern recognition. ,vol. 31, pp. 651- 666 ,(2010) , 10.1016/J.PATREC.2009.09.011
K. Arun Prabha, N. Karthikeyani Visalakshi, Improved Particle Swarm Optimization Based K-Means Clustering international conference intelligent computing and applications. pp. 59- 63 ,(2014) , 10.1109/ICICA.2014.21