New probabilistic inference algorithms that harness the strengths of variational and Monte Carlo methods

作者: Peter Carbonetto

DOI: 10.14288/1.0051537

关键词: Particle filterProbabilistic inferenceComputer scienceMonte Carlo methodAlgorithmHybrid Monte CarloMonte Carlo molecular modelingProbabilistic analysis of algorithms

摘要:

参考文章(364)
Arnaud Doucet, Neil J. Gordon, Joao F. G. De Freitas, Editors: Sequential Monte Carlo Methods in Practice ,(2001)
David Poole, First-order probabilistic inference international joint conference on artificial intelligence. pp. 985- 991 ,(2003)
Michael P. Friedlander, Kevin Murphy, Mark Schmidt, Ewout Van Den Berg, GROUP SPARSITY VIA LINEAR-TIME PROJECTION ,(2008)
Thomas R. Lynam, Gordon V. Cormack, Spam Corpus Creation for TREC. conference on email and anti-spam. ,(2005)
Bhaskara Marthi, Brian Milch, Daniel L. Ong, Andrey Kolobov, Stuart Russell, David Sontag, BLOG: probabilistic models with unknown objects international joint conference on artificial intelligence. pp. 1352- 1359 ,(2005)
Robert J. McEliece, Srinivas M. Aji, The Generalized Distributive Law and Free Energy Minimization ,(2001)