Perturbation theory of the pair correlation function in molecular fluids

作者: R. L. Henderson , C. G. Gray

DOI: 10.1139/P78-075

关键词: Spherical harmonicsMathematical physicsIsotropyRadial distribution functionMean field theoryPhysicsPerturbation (astronomy)Pair potentialAnisotropy

摘要: We study the perturbation theory of angular pair correlation function g(rω1ω2)in a molecular fluid. consider an anisotropic potential form u = u0 + ua, where u0 is isotropic 'reference' potential, and for simplicity in this paper we assume ua to be 'multipole-like', i.e., contain no l = 0 spherical harmonics. expand g powers about g0, radial distribution appropriate u0. This series examined by expanding ha = h−h0 (where h = g−1) its corresponding direct ca harmonic components. approximate summations that automatically truncate series, so Ornstein–Zernike (OZ) equation relating ha can solved closed form. first ca = c1 + c2 + … cn includes all terms order (ua)n. Taking quadrupole–quadrupole interaction, find 'mean field' (MF) approximation ca = c1 gives rise on...

参考文章(7)
J. Downs, K.E. Gubbins, S. Murad, C.G. Gray, Spherical harmonic expansion of the intermolecular site-site potential Molecular Physics. ,vol. 37, pp. 129- 140 ,(1979) , 10.1080/00268977900100111
G.N. Patey, D. Levesque, J.J. Weis, Integral equation approximations for dipolar fluids Molecular Physics. ,vol. 38, pp. 219- 239 ,(1979) , 10.1080/00268977900101621
S. Murad, K.E. Gubbins, C.G. Gray, Second-order perturbation theory for the angular pair correlation function in molecular fluids Chemical Physics Letters. ,vol. 65, pp. 187- 191 ,(1979) , 10.1016/0009-2614(79)80155-4
C. G. Gray, K. E. Gubbins, C. H. Twu, Perturbation theory for molecular fluids: Third‐order term in the Pople expansion Journal of Chemical Physics. ,vol. 69, pp. 182- 193 ,(1978) , 10.1063/1.436383
D.J. Tildesley, W.B. Streett, D.S. Wilson, The spherical harmonic formalism for the thermodynamic properties of molecular fluids Chemical Physics. ,vol. 36, pp. 63- 72 ,(1979) , 10.1016/0301-0104(79)85103-4
G.S. Rushbrooke, On the dielectric constant of dipolar hard spheres Molecular Physics. ,vol. 37, pp. 761- 778 ,(1979) , 10.1080/00268977900103181